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Lecture 13: Impedance Inverter. 
Cohn Crystal Filter. 

 
A block diagram of a superhet receiver is shown below. Recall 
in the superhet receiver that the RF signal is mixed with the 
VFO signal by the RF Mixer down to the IF. In the NorCal 40A, 
the IF is approximately 4.9 MHz.  
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After this, the IF signal is mixed with the BFO signal by the 
Product Detector down to audio frequencies (approximately 620 
Hz in the NorCal 40A). 
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One difficulty here is that the BFO image is only about 1.2 kHz 
away from the IF. For a center frequency of 4.9 MHz, we need a 
bandpass IF filter with a Q of approximately 
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That’s a large Q! The Q’s we’ve seen for discrete elements (and 
TL resonators) have been approximately 200 or less. That’s 50x 
too small. 
 
Quartz crystals will be used instead to achieve this high Q.  
 
However, we need both series and parallel resonant elements to 
realize bandpass ladder filters. While crystals have both these 
resonances, they occur at different frequencies. We need these 
resonant frequencies to be the same. 
 
So, how do we make a bandpass filter with identical quartz 
crystals? We will couple them together in a special way using 
impedance inverters. 
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Impedance Inverters 

 
An impedance inverter is a device or circuit that has an input 
impedance inversely proportional to the load impedance. More 
specifically, the normalized input impedance equals the 
normalized load admittance. 
 
Actually, we’ve already seen an example of an impedance 
inverter already: a λ/4 length of transmission line. 
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Recall from Lecture 9 that for an open circuit load ( LZ = ∞), 
( )4 0V λ =  and ( )4I λ =maximum. Therefore, ( )4 0Z λ = . 

Consequently, this TL has “inverted” the load impedance. 
 
This is a general fact true of any load impedance connected to a 
λ/4 length of TL. As shown in the text (Section 4.11) 
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We make the following definitions. 
• ( ) ( ) 04 4 /z Z Zλ λ=  the normalized input impedance, 
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• ( )0 0 1 L LZ Z z y= =  the normalized load admittance. 
Then (4.102) can be written in the compact form 

 1
4 L

z
z

λ⎛ ⎞ =⎜ ⎟
⎝ ⎠

 (4.105) 

We see here that the normalized input impedance equals the 
inverse of the normalized load impedance. This is the definition 
of an impedance inverter device. 
 
Such a TL impedance inverter would be impractically long for 
our uses. Instead, we can make an impedance inverter using 
discrete L’s and C’s. From Fig. 5.14: 
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Notice that the magnitudes of the inductive and capacitive 
reactances are equal in this circuit. This strictly can occur only at 
a single frequency. So this impedance inverter will be a narrow-
band device, which is ok for us since the IF Filter will have a 
very narrow passband. 
 
Let’s verify the operation of the impedance inverter in Fig. 5.14. 
The input impedance is 
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where zi and zL are the normalized input and load impedances, 
respectively. 
 
That is, the normalized input impedance equals the inverse of 
the normalized load impedance. All quantities have been 
normalized to the inverter reactance, X. 
 
 
Cascade An Impedance Inverter to a Series Resonator 
 
Now, let’s examine what happens when an impedance inverter is 
placed in front of a series resonant circuit (Fig. 5.15a): 
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The impedance inverter, according to (5.41), provides a 
normalized input admittance yi of 
 i L L cy z jx jx r= = − +  (5.42) 
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What does the RHS of (5.42) represent for yi? It is a parallel 
resonant circuit! To see this, consider: 

 

-jbL jbc gyi

yL yc yR  
By inspection we see that 
 i L cy jb jb g= − + +  (5.43) 
 
Consequently, this circuit is equivalent to a series RLC with an 
impedance inverter provided [comparing (5.42) and (5.43)] 
 L cjx jb= , c Ljx jb− = −  and r g=  
or 
 c Lb x= , L cb x=  and g r=  (5.44, 45, 46) 
Hence, we conclude that a series RLC circuit connected through 
an impedance inverter appears to the input terminals of the 
inverter exactly equivalent to a parallel RLC circuit. Cool! 
 
 

Cohn Filter 
 
Your text provides a wonderful description of how the IF Filter 
works in the NorCal 40A. This filter is a fourth-order Cohn filter 
built from four quartz crystals and five identical capacitors. 
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The four element Cohn filter that forms the Intermediate 
Frequency (IF) Filter in the NorCal 40A is: 
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To understand the operation of this filter, the text first adds 
fictitious L and C elements. The unsigned reactances of L and C 
are equal so their series impedance is zero at f0. 
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The next step is to recognize the presence of impedance 
inverters positioned between each quartz crystal. 
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Impedance inverters IF C10-C11 are chosen properly.

 
Replace these tee networks with impedance inverter circuits: 
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The series capacitors increase f0. C9 and C13 are in place to
ensure all crystals see the same increase in f0.
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What remains are two capacitors in series with the crystals X2 
and X3. We can now see that the purpose for C9 and C13 is to 
ensure that X1 and X4 also see the same capacitances. 

 
Now, substitute the equivalent series LC network for each of the 
quartz crystals (and the two series C’s): 
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Our qualitative analysis will begin at the far right of this 
equivalent circuit: 
1. The series LC network 4 connected to impedance inverter C 

appears as a parallel LC network at the left. This is connected 
to series LC network 3. 

2. The series network 3 – and now “parallel” network 4 – 
appears through impedance inverter B as “parallel” network 3 
and series 4. 



Whites, EE 322 Lecture 13 Page 9 of 10  

3. Finally, the series network 2, “parallel” 3 and series 4 appear 
to 1 through impedance inverter A as series 1 connected to 
“parallel” 2, series 3 and “parallel” 4, as shown below. 

4321

 
We can recognize this equivalent circuit as a fourth-order, 
bandpass LC ladder filter! Consequently, this fourth-order Cohn 
filter using quartz crystals is effectively a fourth-order, bandpass 
LC ladder filter. 
 
Lastly, as mentioned earlier, C9-C13 must be chosen properly if 
they are to facilitate the impedance inverter operation. In 
particular, their reactance at 4.91 MHz (the IF) must closely 
match L (which includes the L of the crystal and the “fictitious” 
L of the impedance inverter). 
 
While not quantitative in nature, the discussion here at least 
illustrates how the Cohn filter achieves its bandpass nature. 
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Loaded and Unloaded Q 
 
In Prob. 14, you will measure the loaded Q of the crystal defined 
as 

 0
loaded

m ckt

X
Q

R R
ω=
+

 

In other words, stating that a Q value is a “loaded Q” implies 
that losses from the crystal and the circuit it’s connected to are 
both included. You’ll likely measure ( )loaded 10,000Q ≈O . 
 
The unloaded Q of the quartz crystal  

 0
crystal

m

X
Q

R
ω=  

is typically much larger since it includes only the losses in the 
crystal. As we’ve mentioned before, ( )crystal 150,000Q ≈O . 


