

Blue Pelican Java

by Charles E. Cook

Version 3.0.5h

Copyright © 2004 - 2008 by Charles E. Cook; Refugio, Tx

(All rights reserved)

1-1

“Blue Pelican Java,” by Charles E. Cook. ISBN 1-58939-758-4.

Published 2005 by Virtualbookworm.com Publishing Inc., P.O. Box 9949, College Station,
Tx 77842, US. ©2005, Charles E. Cook. All rights reserved. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, recording or otherwise, without the prior written permission
of Charles E. Cook.

Manufactured in the United States of America.

Preface

You will find this book to be somewhat unusual. Most computer science texts will begin
with a section on the history of computers and then with a flurry of definitions that are
just “so many words” to the average student. My approach with Blue Pelican Java is to
first give the student some experience upon which to hang the definitions that come later,
and consequently, make them more meaningful.

This book does have a history section in Appendix S and plenty of definitions later when
the student is ready for them. If you will look at Lesson 1, you will see that we go right to
work and write a program the very first day. The student will not understand several
things about that first program, yet he can immediately make the computer do something
useful. This work ethic is typical of the remainder of the book. Rest assured that full
understanding comes in time. Abraham Lincoln himself subscribed to this philosophy
when he said, “Stop petting the mule, and load the wagon.”

The usual practice in most Java textbooks of introducing classes and objects alongside
the fundamental concepts of primitive variable types, loops, decision structures, etc. is
deferred until the student has a firm grasp of the fundamentals. Thus, the student is not
overwhelmed by simultaneous introduction of OOPs (Object Oriented Programming)
and the fundamentals. Once introduced, (Lesson 15), OOPs is heavily emphasized for the
remainder of the book.

I fully realize that there are those who disagree with this idea of deferring the
introduction of OOPs, and from their own point of view, they are right. In most cases
they teach only the very highest achieving, mature students. In those cases, I agree that it
is acceptable to begin with OOPs; however, for the average student and especially for
younger high school students, I feel that they need to understand the fundamentals first.

Upon first examination of this book it may not appear to be very “robust” in that there is
not great depth for some of the topics. Actually the depth is there,… in the Appendix.
The Appendix for this book is unusually large. Here is why the book is organized this
way:

• The lessons are kept purposely short so as to hold down the intimidation factor.
As a result, the lessons should look “doable” to the students.

• The in-depth material is placed in the Appendices, and references to the
Appendices are made in the lessons. As an example, in Lesson 18 the split method
is introduced. The split method uses regular expressions that are briefly discussed
there; however, the in-depth presentation of regular expressions is placed in
Appendix AC.

Unfortunately, this book does not introduce any graphics or windows programming. The
57 lessons in this book can be covered in one school year, but just barely. To prepare
students for the AP test (and contests) there is only time to cover the essentials presented
in this book. Check http://www.bluepelicanjava.com for the availability of study
materials for the current AP case study, updates on this book, videos for each lesson, and
an inexpensive way to purchase hard-cover books.

I am often asked how to use this book. “Which lessons are really important and which
can be skipped?” The answer is simple:

• Start on Lesson 1.
• Proceed at a reasonable rate. (See Appendix P for a time-line.)
• Don’t skip anything (except for, perhaps Lesson 23, Lesson 48 and Lesson 54)
• Give a simple, confidence-building quiz on each lesson. Quizzes and keys are

provided in the Answer Book (available at www.bluepelicanjava.com).
• Make sure the students do the provided exercises and projects.
• Give tests at regular intervals. Tests and keys are provided in the Answer Book.

In this book you will also notice another part of my philosophy of teaching and
educational material in general…Keep it simple… I try to keep things as simple and
uncluttered as possible. For example, you will find specific examples in greater numbers
than long-winded explanations in this book. You won’t find many pictures and sidebars
and lots of little colored side notes scattered about. Some of that type format does contain
some useful information; however, I feel that it is largely distracting. Apparently more
and more people are coming around to my way of thinking on this, and here is why I
think so. Recall that just a few years ago that nearly all web pages looked like cobbled
together ransom notes with just a profusion of colors, links, and tidbits scattered all over
the page. Take a look at professional web pages today. They typically have a very neat,
clean appearance…often with just a plain white background and with plenty of space
between the various elements. This is good. Simple is better.

Since this textbook has a strong emphasis on preparation for the AP test and competition
(computer science contests), special “contest type” problems are provided at the end of
most lessons. I realize that most students will not compete and some may not even take
the AP exam; however, the material is not wasted on them. Those “contest type”
problems are good for the average student too, as long as they are not overwhelmed with
too many problems at one sitting. Hopefully, I have just the optimum number of these
type problems on each lesson and students won’t be burned-out by too much of a good
thing.

Finally, we come to the reason for the choice of Blue Pelican Java as a name for this
book. One of the early (and free) java IDE’s available for students was BlueJ and it was
the first my students used. I always thought BlueJ was an elegant name and had
expressed a desire to a colleague to continue the tradition by naming the book after some
other blue-colored bird. He jokingly suggested Blue Pelican, not really being serious
about naming a book after this rather ungainly, clunky bird. For the lack of an existing
name for the book during development, it continued to be called Blue Pelican. If you call
something by a particular name long enough, that’s its name, and so the name stuck.

I truly hope Blue Pelican Java is useful to you and that you find the experience of
learning to program a rewarding one. Just remember, few things worthwhile are acquired
without some sacrifice. The “sacrifice” here will be the time you invest in creating
programs and trying the code suggested in these pages.

Charles E. Cook

Table of Contents - 1

Table of Contents

Lesson Title Description Page

1 Hello World Simple use of println, rems, remarks, comments,
block rems. Project… From Me to You

1-1

2 Variable Types String, int, double, legal names, illegal names,
declaring, initializing

2-1

3 Simple String Operations Concatenation, length, substring, toLowerCase,
toUpperCase, escape sequences, backslash
Project… Name That Celebrity

3-1

4 Using Numeric variables Assignment, ++, --, modulus, +=, -=, /=, *=,
PEMDAS, increment, decrement, multiple
declarations, remainder, compound operator, round-
off. Project…Cheating on Your Arithmetic
Assignment

4-1

5 Mixed Data Types, Casting, and
Constants

final, mixed arithmetic, casting. Project… Mixed
Results

5-1

6 Math Class Methods abs, pow, sqrt, ceil, floor, log, min, max, round, PI,
sin, cos, tan, asin, acos, atan, toDegrees, toRadians.
Project… Compute This

6-1

7 Input from the Keyboard Scanner class, nextInt, nextDouble, next, nextLine,
Project… Going in Circles, Project… What’s My
Name?

7-1

8 boolean Type and Operators AND, OR, NOT, precedence 8-1

9 “if” statement equals, equalsIgnoreCase. Project…Even or Odd? 9-1

10 The “switch” Statement and char switch, default, break, char. Project… Weight on
Other Planets

10-1

11 The “for” Loop Initializing, control, and step expressions. break,
infinite loops, scope, for-loop project, Project…
Name Reversal

11-1

12 while and do-while loops Testing at top and bottom of loop, break, continue 12-1

13 ASCII and more on char ASCII codes for numbers and letters, conversion
from String to char, conversion from char to String,
isDigit, is Letter, isLetterOrDigit, isLowerCase,
isUpperCase

13-1

14 Binary, Hex, and Octal Conversion between number systems, binary
addition. Project… Basically Speaking

14-1

15 Classes and Objects Instantiate, methods, state variables, constructor,
signature, public, void, Project… What’s That
Diameter? Project… Overdrawn at the Bank

15-1

16 More on Classes & Objects Private methods and state variables, different lines to
declare and instantiate, setting objects equal, equality
of objects, reassignment of objects, Project… Gas
Mileage

16-1

17 Advanced String Methods compareTo, indexOf(), lastIndexOf(), charAt(),
replace(), trim, Scanner, reg expr. Project… Add
‘em Up, Project… Encryption / Decryption

17-1

18 Arrays Declaring and initializing, length, parallel arrays,
Out-of-bounds exception, passing an array to a
method, automatic initialization, split, reg expr.
Project… Array of Hope

18-1

Table of Contents - 2

19 Advanced Array Concepts Arrays of objects, comparison of array values, null
pointer exception, different reference to same array,
arraycopy, toCharArray, logical vs physical size,
Arrays class, sort, binarySearch, equals, fill,
importing, command line arguments, enhanced for-
loop. Project… Sorting a String Array. Project…
Two Orders for the Price of One

19-1

20 Static Methods and State
Variables

Class methods and variables, static constants static
imports. Project… How Far To The Line?

20-1

21 Wrapper Classes Converting primitives to objects and vice versa 21-1

22 More on Wrapper Classes parseInt, parseDouble, toHexString, toOctalString,
toBinaryString, toString, valueOf

22-1

23 StringTokenizer Class countTokens, nextToken, hasMoreTokens, delimiter,
token, Project… Military Censor

23-1

24 Input from a Disk File Scanner, File, throws IOException, readLine, Project
for Reading Files, close, Project… Reading Files

24-1

25 Processing File Input with
Scanner

Processing text coded numbers, using parseInt and
parseDouble, tokenizing and manipulating text,
Project… Get Rid of That Plus Sign!, Project…
Student Averages

25-1

26 Writing to a Text File FileWriter, PrintWriter, print, println, appending to
the end of a file, close, Project… Write Student
Averages

26-1

27 Formatting (rounding off) NumberFormat, formatting numbers, currency, and
percent, Formatter class, printf. Project…
BaseClass. Project… Gymnastics

27-1

28 Bitwise operators Bitwise-AND, OR, exclusive-OR, and NOT.
Negative numbers, sign bit, msb, most significant bit

28-1

29 Advanced Bitwise Operations Shift left and right, <<, >>, >>>, preservation of
sign, short-circuit, precedence. Negative numbers,
sign bit, msb, most significant bit. Project…
Tweaking for Speed

29-1

30 Random Numbers nextDouble, nextInt, Monte Carlo, simulations,
Project… Monte Carlo Technique

30-1

31 StringBuffer Class append, toString, substring, length, setCharAt,
delete, deleteCharAt, insert, charAt. Project…
Concatenations Gone Wild

31-1

32 Boolean Algebra and
DeMorgan’s Theorem

OR, AND, truth table 32-1

33 Selection Operator ?: syntax 33-1

34 Passing by Value and by
Reference

Arrays, primitives, objects, references. Project…
Pass the Gravy, Please

34-1

35 Two-Dimensional Arrays Subscripted variables, matrix, initializing, Arrays
class. Project… Matrix Multiplication, Project…
Matrix Multiplication with File Input

35-1

36 Inheritance Superclass, subclass, base class, derived class,
abstract, final, overriding, shadowing, cosmic
superclass, instanceof, Object, this, super

36-1

37 Exceptions Checked, unchecked, try, catch, finally, throw,
throws, Project… Keep Trying

37-1

Table of Contents - 3

38 Interfaces Implementation perspective,objective perspective,
instanceof, polymorphism, realizes,
implements.,Project… Linear Function

38-1

39 Complexity Analysis (Big O) sequential search, binary search 39-1

40 Recursion Factorial, Fibonacci series, Project… Fibonacci 40-1

41 Sorting Routines selection, insertion, quick, & merge sorts, partition,
big O chart, Project… Multiple Key Sorting

41-1

42 List Interface ArrayList, LinkedList, Vector 42-1

43 ArrayList advantages, disadvantages, Project… Big Bucks in
the Bank

43-1

44 Iterator/ListIterator stepping through a list, Project… Big Bucks
Revisited

44-1

45 Comparable/Comparator compare objects, compare, compareTo, Project…
Sorting BankAccount Objects, Project…Sorting
BankAccount Objects Alphabetically, Project…
Sorting BankAccount Objects using a Comprator

45-1

46 HashSet/TreeSet Set interface, Iterators, Project… HashSet/
Intersection, Project… HashSet/Union

46-1

47 HashMap/TreeMap Keys, values, Map interface, iterator, Project…
Mapping Bank Accounts, Project…Code Talker,
Project…Histogram, Project…Student
Classification

47-1

48 Flow Charts & Optimizing for
Speed

Writing code for a flow chart. Project… Divisors of
a Number, Project… Optimized Code for
Divisors, Project… Super Optimized Code for
Divisors, Speed tricks

48-1

49 Singly Linked List Example list of pipeline nodes. Project… insert
Method for Singly Linked List

49-1

50 The LinkedList Class (doubly
linked) and Stacks

Methods of the LinkedList class used to implement a
Stack class (push, pop, etc). Queues. Project…
StackLL Class. Project… Stack Calculator

50-1

51 Binary Search Binary search of primitive arrays & object arrays,
recursive search . Arrays.sort, Arrays.binarySearch.
Project…Binary Search, Reverse Order;
Project… Binary Search with Objects

51-1

52 Binary Search Trees Binary search trees. Preorder, inorder, postorder, and
in level traversals. Expression trees. Project… BST
find Method

52-1

53 Queues LinkedListQueue, ArrayListQueue. Project…
Who’s Next?, Project.… Shifting Marquee

53-1

54 Inner Classes Project… Inner Class inside Outer Class,
Project… Inner Class Inside Method

54-1

55 Heaps Complete and full trees, adding and deleting nodes.
Project… Printing a Heap, …A Heap of Trouble

55-1

56 Priority Queues Heap based priority queue, array implementation.
Project… Who Has Highest Priority?, Project…
Smile for the Camera

56-1

57 Lookup Tables and Hashing Lookup tables, hashing techniques, collisions,
chaining, probing load factor, and Object class
methods. Project… A Taste of Hash; Project…
Hashing Abraham Lincoln

57-1

Table of Contents - 4

Case Study… A major project… Distance to a Meandering Trail CS1-1

Golden Nuggets of Wisdom are short learning/review activities. In the six weeks preceding an AP
exam, contest, or other major evaluation, study one of these each day. Follow up with a quiz
(provided in the Teacher’s Test/Answer Book) on that topic the next day.

#1 Golden Nugget of Wisdom #1 loop variable after exiting loop Ng1

#2 Golden Nugget of Wisdom #2 overriding, overloading, polymorphism Ng2

#3 Golden Nugget of Wisdom #3 implements, realizes, log, exclusive or Ng3

#4 Golden Nugget of Wisdom #4 charAt, special feature of substring Ng4

#5 Golden Nugget of Wisdom #5 masking Ng5

#6 Golden Nugget of Wisdom #6 implementing an interface, converting decimal
number to binary, hex, an octal

Ng6

#7 Golden Nugget of Wisdom #7 StringBuffer insert,alph order, simultaneously adding
and concatenating

Ng7

#8 Golden Nugget of Wisdom #8 escape characters, null, continue, break, selection Ng8

#9 Golden Nugget of Wisdom #9 operator (?:), bitwise not, modulus with fractions Ng9

#10 Golden Nugget of Wisdom #10 final, arraycopy, calling a different constructor Ng10

#11 Golden Nugget of Wisdom #11 LIFO, FIFO, bitwise ANDing and ORing of
booleans, modulus with negative numbers

Ng11

#12 Golden Nugget of Wisdom #12 casting, incompatible object comparison, access
control modifier

Ng12

#13 Golden Nugget of Wisdom #13 mixed arithmetic, declaring an array of objects Ng13

#14 Golden Nugget of Wisdom #14 equality between Wrapper class objects, hex, binary,
octal, exclusive or

Ng14

#15 Golden Nugget of Wisdom #15 short circuiting, valueOf, converting numerics to
Strings

Ng15

#16 Golden Nugget of Wisdom #16 Order within method signature, String replace,
nextToken delimiter

Ng16

#17 Golden Nugget of Wisdom #17 indexOf, different references to same array, setting
arrays and other objects equal to null

Ng17

#18 Golden Nugget of Wisdom #18 subclass method overriding superclass method,
equivalence of methods and function, equivalence of
signatures and headers

Ng18

#19 Golden Nugget of Wisdom #19 multiple constructors Ng19

#20 Golden Nugget of Wisdom #20 initialization blocks Ng20

#21 Golden Nugget of Wisdom #21 initializing numeric state and method variables Ng21

#22 Golden Nugget of Wisdom #22 prototype, short-circuiting, isLetter (etc) Ng22

#23 Golden Nugget of Wisdom #23 char & int, ASCII, casting, XOR Ng23

#24 Golden Nugget of Wisdom #24 boolean simplification, law of absorption, printing 2-
D arrays.

Ng24

#25 Golden Nugget of Wisdom #25 random numbers, maps, sets, keySet Ng25

#26 Golden Nugget of Wisdom #26 recursion Ng26

#27 Golden Nugget of Wisdom #27 Big O, floor, ceil, round Ng27

#28 Golden Nugget of Wisdom #28 split method Ng28

Table of Contents - 5

#29 Golden Nugget of Wisdom #29 Iterator, ListIterator, exceptions, abstract, final Ng29

#30 Golden Nugget of Wisdom #30 Static methods and variables, NumberFormat,
ListIterator interface

Ng30

Appendix
A

Key Words Reserved words that are part of Java A-1

Appendix
B

Escape Sequences \b \t \n \” \’ \\ A-1

Appendix
C

Primitive Data Types byte, short, int, long, float, double, char, boolean C-1

Appendix
D

ASCII Codes Decimal, hex, octal, and html equivalents D-1

Appendix
E

Saving Text Files Windows settings, Notepad, WordPad E-1

Appendix
F

Text and Binary Files Explained Storage methods F-1

Appendix
G

Two’s Complement Notation Negative numbers, invert, ones’ compliment, ten’s
complement, odometer, msb, sign bit

G-1

Appendix
H

Operator Precedence Order of operations H-1

Appendix
I

Creating Packages and
Importing Classes

Importing, package, wildcard, 6steps to create a
package, classpath variable

I-1

Appendix
J

Typical Contest Classes and
Interfaces

Scope of UIL contest J-1

Appendix
K

Exception Classes A list of some checked and unchecked exceptions K-1

Appendix
L

An Essay on Interfaces Down to earth explanation of Interfaces L-1

Appendix
M

Input from the Keyboard BufferedReader, InputStreamReader. M-1

Appendix
N

Using the BlueJ Programming
Environment

Creation of projects and classes N-1

Appendix
O

Using the JCreator Programming
Environment

Creation of projects and classes O-1

Appendix
P

Time Allocation for Lessons Time allocation for each lesson P-1

Appendix
Q

AP(A & AB) Correlation Page number correlation Q-1

Appendix
R

Texas TEKS/TAKS Correlation Page number correlation to TEKS R-1

Appendix
S

History of Computers Pascal, Babbage, ENIAC, operating systems, MITS
Altair, TRS 80, Apple, IBM pc, disk storage, key
punch cards

S-1

Appendix
T

Viruses What a virus is, how they are spread, types,
protection, ethics, and etiquette

T-1

Appendix
U

Enrichment Activities Use of LANs and WANs, Using a scanner and OCR
software, Software specifications, Publish
Information, Electronic communities

U-1

Table of Contents - 6

Appendix
V

Computer Languages Java, Visual Basic, Java Script, Assembly language,
Machine code, Compiled vs Interpreted languages

V-1

Appendix
W

Binary Tree Terms Definitions of terms related to binary trees. W-1

Appendix
X

Compiling and Executing
without and IDE

Using javac.exe, java.exe, and javaw.exe.
Compiling and executing, DOS prompt, Path
Variable

X-1

Appendix
Y

Kilobytes, Megabytes,
Gigabytes

Tables with exact values “power of two” equivalents Y-1

Appendix
Z

The DecimalFormat Class Formatting numbers, currency, and percents with
patterns

Z-1

Appendix
AA

Matrix Multiplication Matrix multiplication explained in detail AA-1

Appendix
AB

Monospaced Fonts Vertical alignment of printout AB-1

Appendix
AC

Regular Expressions A discussion on how to build and interpret regular
expressions. Additional methods of the String class;
split, replaceAll, replaceFirst

AC-1

Appendix
AD

Formatter class specifiers and
flags

Format specifiers, format flags AD-1

Appendix
AE

Appendix

AF

javaDoc

Generic Classes

The javDoc technique for generating web based
documentation.

Creation of generic classes

AE-1

AF-1

Index Indx-
1

1-1

Lesson 1…..Hello World

Program Skeleton:

Enter the following program skeleton, compile (prepare it to run), and then run (execute).
Your instructor may have you give it a specific project name; otherwise, call the project
Lesson1.

If you do not know how to enter and execute a program, ask your instructor,
or use the appendices in this book for two of the more popular programming
environments. See Appendix N for the BlueJ environment and Appendix O
for the JCreator environment.

public class Tester
{
 public static void main(String args[])
 {

 }
}

At this point don’t worry about what any of this means. It’s just something we must do
every time. Soon we will learn the meaning of all of this. For now it’s just the skeleton
that we need for a program.

Adding some meaningful code:

Now, let’s add some meaningful code inside the main method. (Notice this word,
method. We will constantly refer to methods throughout this course.) We will also add a
remark.

public class Tester //We could put any name here besides Tester
{
 public static void main(String args[])
 {
 System.out.println(“Hello world”);
 }
}

Remarks:

Notice the rem (remark) above that starts with //. You can put remarks anywhere in the
program without it affecting program operation. Remarks are also called comments or
notes.

Printing:

System.out.println(“Hello world”); is how we get the computer to printout something.
Notice the trailing semicolon. Most lines of code are required to end in a semicolon.

Now try putting in some other things in the println parenthesis above. Each time
recompile and run the program:

1. “Peter Piper picked a peck of pickled peppers.”
2. “I like computer science.”

1-2
3. 25/5
4. 4 / 7.0445902
5. 13 * 159.56

Two printlns for the price of one:

Next, modify your program so that the main method looks as follows:

 public static void main(String args[])
 {
 System.out.println(“Hello world”);
 System.out.println(“Hello again”);
 }

Run this and note that it prints :
 Hello world
 Hello again

Printing “Sideways”:

Now remove the ln from the first println as follows:
public static void main(String args[])

 {
 System.out.print(“Hello world”);
 System.out.println(“Hello again”);
 }

Run this and note that it prints:
 Hello worldHello again

Here are the rules concerning println and print:

• System.out.println() completes printing on the current line and pulls the print
position down to the next line where any subsequent printing continues.

• System.out.print() prints on the current line and stops there. Any subsequent
printing continues from that point.

An in-depth look at rems:

Let’s take a further look at rems. Consider the following program (class) in which we
wish to document ourselves as the programmer, the date of creation, and our school:

public class Tester
{
 //Programmer: Kosmo Kramer
 //Date created: Sept 34, 1492
 //School: Charles Manson High School; Berkley, Ca

 public static void main(String args[])
 {
 System.out.println(“Hello again”);
 }
}

1-3
Block rems:

It can get a little tedious putting the double slash rem-indicator in front of each
line, especially if we have quite a few remark lines. In this case we can “block
rem” all the comment lines as follows:

public class Tester
{
 /*Programmer: Kosmo Kramer
 Date created: Sept 34, 1492
 School: Charles Manson Junior High; Berkley, Ca*/

 public static void main(String args[])
 {
 System.out.println(“Hello again”);
 }
}

Notice we use /* to indicate the start of the block and */ for the end.
Everything between these two symbols is considered to be a remark and will be
ignored by the computer when compiling and running.

Project… From Me To You
Create a new project called FromMeToYou having a Tester class with the following content.
Also include remarks above public class Tester that identifies you as the author along with the
date of creation of this program:

 //Author: Charles Cook

//Date created: Mar 22, 2005
public class Tester
{
 public static void main(String args[])
 {
 …
 }
}

Supply code in the place of … that will produce the following printout:

From: Bill Smith
Address: Dell Computer, Bldg 13
Date: April 12, 2005

To: Jack Jones

Message: Help! I'm trapped inside a computer!

2-1

Lesson 2…..Variable Types (String, int, double)

Three variable types:

(A good way to learn the following points is to modify the code of the “Hello World”
program according to the suggestions below.)

1. String….used to store things in quotes….like “Hello world”

Sample code:
 public static void main(String args[])
 {
 String s = “Hello cruel world”;
 System.out.println(s);
 }

2. int ….used to store integers (positive or negative)

Sample code:
 public static void main(String args[])
 {
 int age = 59;
 System.out.println(age);
 }

3. double ….used to store “floating point” numbers (decimal fractions). double means

“double precision”.
Sample code:

 public static void main(String args[])
 {
 double d = -137.8036;
 System.out.println(d);

 d = 1.45667E23; //Scientific notation…means 1.45667 X 1023

 }

Declaring and initializing:

When we say something like

double x = 1.6;

we are really doing two things at once. We are declaring x to be of type double and we
are initializing x to the value of 1.6. All this can also be done in two lines of code (as
shown below) instead of one if desired:

double x; //this declares x to be of type double
x = 1.6; //this initializes x to a value of 1.6

What’s legal and what’s not:

int arws = 47.4; //illegal, won’t compile since a decimal number cannot “fit” into an
 //integer variable.

double d = 103; //legal…same as saying the decimal number 103.0

2-2

Rules for variable names:

Variable names must begin with a letter (or an underscore character) and cannot contain
spaces. The only “punctuation” character permissible inside the name is the underscore
(“_”). Variable names cannot be one of the reserved words (key words…see Appendix
A) that are part of the Java language.

Legal names Illegal names
Agro 139
D 139Abc
d31 fast One
hoppergee class
hopper_gee slow.Sally
largeArea double
goldNugget gold;Nugget
 hopper-gee

Variable naming conventions:
It is traditional (although not a hard and fast rule) for variable names to start with a
lower case letter. If a variable name consists of multiple words, combine them in one of
two ways:

bigValue… jam everything together. First word begins with a small letter and
 subsequent words begin with a capital.

big_value… separate words with an underscore.

2-3

Exercise on Lesson 2

1. What are the three main types of variables used in Java and what are they used to store?

2. What type of variable would you use to store your name?

3. What type of variable would you use to store the square root of 2?

4. What type of variable would you use to store your age?

5. Write a single line of code that will create a double precision variable called p and store
1.921 X 10-16 in it.

6. Write a single line of code that will create an integer variable called i and store 407 in
it.

7. Write a single line of code that will create a String variable called my_name and store
your name in it.

8. Write a line of code that will declare the variable count to be of type int. Don’t
initialize.

9. Write a line of code that initializes the double precision variable bankBalance to
136.05. Assume this variable has already been declared.

10. Which of the following are legal variable names?
 scooter13 139_scooter homer-5 ;mary public doubled double ab c

11. Which of the following is the most acceptable way of naming a variable. Multiple

answers are possible.
a. GroovyDude
b. GROOVYDUDE
c. groovyDude
d. Groovydude
e. groovy_dude
f. groovydude

12. Comment on the legality of the following two lines of code.

double dist = 1003;
int alt = 1493.86;

3-1

Lesson 3…..Simple String Operations

In this lesson we will learn just a few of the things we can do with Strings.

Concatenation:

First and foremost is concatenation. We use the plus sign, +, to do this. For example:

String mm = “Hello”;
String nx = “good buddy”;
String c = mm + nx;
System.out.println(c); //prints Hellogood buddy…notice no space between o & g

The above code could also have been done in the following way:
String mm = “Hello”;
String nx = “good buddy”;
System.out.println(mm + “ ” + nx); //prints Hello good buddy…notice the space

We could also do it this way:
System.out.println(“Hello” + “ good buddy”); // prints Hello good buddy

The length method:
Use the length() method to find the number of characters in a String:

String theName = “Donald Duck”;
int len = theName.length();
System.out.println(len); //prints 11…notice the space gets counted

 Right now we don’t see much value in this length thing…just wait!

A piece of a String (substring):

We can pick out a piece of a String…substring

String myPet = “Sparky the dog”;
String smallPart = myPet.substring(4);
System.out.println(smallPart); //prints ky the dog

Why do we get this result? The various characters in a String are numbered starting on the
left with 0. These numbers are called indices. (Notice the spaces are numbered too.)

 S p a r k y t h e d o g … so now we see that the ‘k’ has index 4 and we go from

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 k all the way to the end of the string to get “ky the dog”.

A more useful form of substring:

But wait! There’s another way to use substring
String myPet = “Sparky the dog”;
String smallPart = myPet.substring(4, 12);
System.out.println(smallPart); //prints ky the d

 How do we get ky the d? Start at k, the 4th index, as before. Go out to the 12th index, ‘o’ in

this case and pull back one notch. That means the last letter is d.

3-2

Conversion between lower and upper case:

toLowerCase converts all characters to lower case (small letters)

String bismark = “Dude, where’s MY car?”;
System.out.println(bismark.toLowerCase()); // prints dude, where’s my car?

toUpperCase converts all characters to upper case (capital letters)

System.out.println(“Dude, where’s My car?”.toUpperCase());
//prints DUDE, WHERE’S MY CAR?

Note: length, substring, toLowerCase, and toUpperCase are all methods of the String
class. There are other methods we will learn later.

Concatenating a String and a numeric:

It is possible to concatenate a String with a numeric variable as follows:

int x = 27;
String s = “Was haben wir gemacht?”; //German for “What have we done?”
String combo = s + “ ” + x;
System.out.println(combo); //prints Was haben wir gemacht? 27

Escape sequences:

How do we force a quote character (“) to printout…. or, to be part of a String. Use the
escape sequence, \”, to print the following (note escape sequences always start with the \
character…see Appendix B for more on escape sequences):

What "is" the right way?

 String s = “What \"is\" the right way?”;

System.out.println(s); //prints What "is" the right way?

Another escape sequence, \n, will create a new line (also called line break) as shown
below:

String s = “Here is one line\nand here is another.”;
System.out.println(s);

Prints the following:
 Here is one line
 and here is another.

The escape sequence, \\, will allow us to print a backslash within our String. Otherwise, if
we try to insert just a single \ it will be interpreted as the beginning of an escape sequence.

System.out.println(“Path = c:\\nerd_file.doc”);

Prints the following:

3-3

Path = c:\nerd_file.doc

The escape sequence, \t, will allow us to “tab” over. The following code tabs twice.
System.out.println(“Name:\t\tAddress:”);

Prints the following:

Name: Address:

 Exercise on Lesson 3

1. Write code in which a String variable s contains “The number of rabbits is”. An integer
variable argh has a value of 129. Concatenate these variables into a String called report.
Then print report. The printout should yield:

The number of rabbits is 129.
Note that we want a period to print after the 9.

2. What is the output of System.out.println(p.toUpperCase()); if p = “Groovy Dude”?

3. Write code that will assign the value of “Computer Science is for nerds” to the String

variable g. Then have it print this String with nothing but “small” letters.

4. What will be the value of c?
String c;
String m = “The Gettysburg Address”;
c = m.substring(4);

5. What will be the value c?

String b = “Four score and seven years ago,”;
c = b.substring(7, 12);

6. What is the value of count?

int count;
String s = “Surface tension”;

 count = s.length();

7. Write code that will look at the number of characters in String m = “Look here!”; and then
print

“Look here!” has 10 characters.
 Use the length() method to print the 10 ….you must also force the two quotes to print.

8. How would you print the following?
All “good” men should come to the aid of their country.

3-4

9. Write code that will produce the following printout using only a single println().
Hello
Hello again

10. Write code that will produce the following printout.

A backslash looks like this \, …right?

11. What is output by the following?
String pq = “Eddie Haskel”;
int hm = pq.length();
String ed = pq.substring(hm - 4);

 System.out.println(ed);

12. Which character is at the 5th index in the String “Herman Munster”?

Project… Name that Celebrity

Create a new project called NameThatCelebrity in which only partially recognizable names of
celebrities are to be produced. In a real implementation of this game, the idea is for a contestant
to be able to guess the real name of the celebrity after the first two and last three letters are
dropped from the name. We have been given the task of testing the feasibility of this idea by
producing the following printout:

Allan Alda>>>lan A
John Wayne>>>hn Wa
Gregory Peck>>>egory P

Begin your code within the main method as follows:

 String s1 = “Allan Alda”;
 String s2 = “John Wayne”;
 String s3 = “Gregory Peck”;

Apply the length and substring methods to these Strings to produce the above printout.

4-1

Lesson 4…..Using Numeric Variables

The assignment operator:

The assignment operator is the standard equal sign (=) and is used to “assign” a value to
a variable.

 int i = 3; // Ok,…assign the value 3 to i. Notice the direction of data flow.

 3 = i; // Illegal! Data never flows this way!

 double p;
 double j = 47.2;
 p = j; // assign the value of j to p. Both p and j are now equal to 47.2

Multiple declarations:

It is possible to declare several variables on one line:

double d, mud, puma; //the variables are only declared
double x = 31.2, m = 37.09, zu, p = 43.917; //x, m, & p declared and initialized
 // zu is just declared

Fundamental arithmetic operations:

The basic arithmetic operation are +, -, * (multiplication), / (division), and % (modulus).

Modulus is the strange one. For example, System.out.println(5%3); will print 2.
This is because when 5 is divided by 3, the remainder is 2. Modulus gives the
remainder. Modulus also handles negatives. The answer to a%b always has the
same sign as a. The sign of b is ignored.

PEMDAS:

The algebra rule, PEMDAS, applies to computer computations as well. (PEMDAS stands
for the order in which numeric operations are done. P = parenthesis, E = exponents,
M = multiply, D = divide, A = add, S = subtract. Actually, M and D have equal
precedence, as do A and S. For equal precedence operation, proceed from left to right. A
mnemonic for PEMDAS is, “Please excuse my dear Aunt Sally”… See Appendix H for
the precedence of all operators.)

System.out.println(5 + 3 * 4 –7); //10
System.out.println(8 – 5*6 / 3 + (5 –6) * 3); //-5

Not the same as in Algebra:

An unusual assignment….consider the following:

count = count +3; //this is illegal in algebra; however, in computer science it
 //means the new count equals the old count + 3.

int count =15;
count = count + 3;

4-2

System.out.println(count); //18

Increment and Decrement:
The increment operator is ++, and it means to add one. The decrement operator is --, and
it means to subtract one:

x++; means the same as x = x +1;
x--; means the same as x = x – 1;
x++ is the same as ++x (the ++ can be on either side of x)
x-- is the same as --x (the -- can be on either side of x)

int y = 3;
y++;
System.out.println(y); //4

Compound operators:

Syntax Example Simplified meaning
a. +=

x += 3; x = x + 3;

b. -=
x -= y - 2; x = x – (y - 2);

c. *=

z*= 46; z = z * 46;

d. /=
p/= x-z; p = p / (x-z);

e. %=

j%= 2 j = j%2;

Code Examples

 int g = 409;
 g += 5;
 System.out.println(g); //414

 double d = 20.3;
 double m =10.0;
 m*=d –1;
 System.out.println(m); //193.0

The whole truth:

Actually, the full truth was not told above concerning x++. It does not always have the
same effect as does ++x. Likewise, x-- does not always have the same effect as does --x.

x++ increments x after it is used in the statement.
++x increments x before it is used in the statement.

4-3

Similarly,

x-- decrements x after it is used in the statement.
--x decrements x before it is used in the statement.

Code Examples

 int q = 78;
 int p = 2 + q++;
 System.out.println(“p = ” + p + “, q = ” + q); //p = 80, q = 79

int q = 78;
 int p = ++q + 2;
 System.out.println(“p = ” + p + “, q = ” + q); //p = 81, q = 79

Integer division truncation:
When dividing two integers, the fractional part is truncated (thrown away) as illustrated
by the following:

int x = 5;
int y = 2;
System.out.println(x / y); //Both x and y are integers so the “real” answer of 2.5

 //has the fractional part thrown away to give 2

Exercise on Lesson 4

Unless otherwise directed in the following problems, state what is printed. Some of these
problems may have incorrect syntax and in those cases you should answer that the code would
not compile.

1. int h = 103;
int p =5;
System.out.println(++h + p);
System.out.println(h);

2. Give three code examples of how to increment the integer j by 1.

3. double def;
double f = 1992.37;
def = f;
System.out.println(def);

4-4

4. Write a single line of code that will print the integer variable zulu and then decrement its
value by 1.

5. int a = 100;

int b = 200;
b/=a;
System.out.println(b + 1);

6. Write a single line of code that uses the compound operator, -=, to subtract p-30 from the
integer value v and store the result back in v.

7. Write a single line of code that does the same thing as #6 but without using - =.

8. int p = 40;

int q = 4;
System.out.println(2 + 8 * q / 2 - p);

9. int sd = 12;
int x = 4;
System.out.println(sd%(++x));
System.out.println(x);

10. int g;
3 = g;
System.out.println(++g*79);
What is the result?

11. On a single line of code declare m, b, and f to be double and on that same line initialize
them all to be 3.14.

12. On a single line of code declare x, y, and z all to be of integer type.

13. int m = 36;

int j = 5;
m = m / j; // new m is old m divided by j
System.out.println(m);
What’s printed?

14. System.out.println(3/4 + 5*2/33 –3 +8*3);
What’s printed?

4-5

15. What is the assignment operator?

16. Write a statement that stores the remainder of dividing the variable i by j in a variable

named k.

17. int j = 2;
System.out.println(7%3 + j++ + (j – 2));

18. Show three different ways to decrement the variable j.

Project… Cheating on Your Arithmetic Assignment

Create a new project called ArithmeticAssignment with a class called Tester that will calculate
and print the results of the following arithmetic problems:

79 + 3 * (4 + 82 –68) – 7 +19

(179 +21 +10) / 7 + 181

10389 * 56 * 11 + 2246

The printout should look like the following:

79 + 3 * (4 + 82 - 68) -7 + 19 = 145

(179 + 21 + 10) / 7 + 181 = 211

10389 * 56 * 11 + 2246 = 6401870

5-1

Lesson 5…..Mixed Data Types, Casting, and Constants

So far we have looked mostly at simple cases in which all the numbers involved in a
calculation were either all integers or all doubles. Here, we will see what happens when we
mix these types in calculations.

Java doesn’t like to lose data:

Here is an important principle to remember: Java will not normally store information in a
variable if in doing so it would lose information. Consider the following two examples:

1. An example of when we would lose information:

double d = 29.78;
int i = d; //won’t compile since i is an integer and it would have to chop-off
 // the .78 and store just 29 in i….thus, it would lose information.

There is a way to make the above code work. We can force compilation and
therefore result in 29.78 being “stored” in i as follows (actually, just 29 is stored
since i can only hold integers):

 int i = (int)d; //(int) “casts” d as an integer… It converts d to integer form.

2. An example of when we would not lose information:

int j = 105;
double d = j; //legal, because no information is lost in storing 105 in the

 // double variable d.

The most precise:

In a math operation involving two different data types, the result is given in terms of the
more precise of those two types…as in the following example:

int i = 4;
double d = 3;
double ans = i/d; //ans will be 1.33333333333333…the result is double precision

20 + 5 * 6.0 returns a double. The 6.0 might look like an integer to us, but
because it’s written with a decimal point, it is considered to be a floating point
number…a double.

Some challenging examples:

What does 3 + 5.0/2 + 5 * 2 – 3 return? 12.5

What does 3.0 + 5/2 + 5 * 2 – 3 return? 12.0

What does (int)(3.0 + 4)/(1 + 4.0) * 2 – 3 return? -.2

Don’t be fooled:

Consider the following two examples that are very similar…but have different
answers:

5-2
 double d = (double)5/4; //same as 5.0 / 4…(double) only applies to the 5
 System.out.println(d); //1.25

int j = 5;
int k = 4;

 double d = (double)(j / k); //(j / k) is in its own little “world” and performs
 //integer division yielding 1 which is then cast as

 //a double, 1.0
 System.out.println(d); //1.0

Constants:

Constants follow all the rules of variables; however, once initialized, they cannot be
changed. Use the keyword final to indicate a constant. Conventionally, constant
names have all capital letters. The rules for legal constant names are the same as for
variable names. Following is an example of a constant:

final double PI = 3.14159;

The following illustrates that constants can’t be changed:

final double PI = 3.14159;
PI = 3.7789; //illegal

 When in a method, constants may be initialized after they are declared.

final double PI; //legal
PI = 3.14159;

Constants can also be of type String, int and other types.

final String NAME= “Peewee Herman”;
final int LUNCH_COUNT = 122;

Project… Mixed Results
Create a new project called MixedResults with a class called Tester. Within the main method
of Tester you will eventually printout the result of the following problems. However, you
should first calculate by hand what you expect the answers to be. For example, in the
parenthesis of the first problem, you should realize that strictly integer arithmetic is taking
place that results in a value of 0 for the parenthesis.

double d1 = 37.9; //Initialize these variables at the top of your program
double d2 = 1004.128;
int i1 = 12;
int i2 = 18;

Problem 1: 57.2 * (i1 / i2) +1
Problem 2: 57.2 * ((double)i1 / i2) + 1
Problem 3: 15 – i1 * (d1 * 3) + 4
Problem 4: 15 – i1 * (int)(d1 * 3) + 4
Problem 5: 15 – i1 * ((int)d1 * 3) + 4

5-3

Your printout should look like the following:

Problem 1: 1.0
Problem 2: 39.13333333333333
Problem 3: -1345.39999999999
Problem 4: -1337
Problem 5: -1313

Exercise on Lesson 5

Unless otherwise instructed in the following problems, state what gets printed.

1. Write code that will create a constant E that’s equal to 2.718.

2. Write the simplest type constant that sets the number of students, NUM_STUDENTS,
to 236.

3. What’s wrong, if anything, with the following code in the main method?
final double Area;
Area = 203.49;

4. int cnt = 27.2;
System.out.println(cnt);
What’s printed?

5. double d = 78.1;
int fg = (int)d;
System.out.println(fg);
What’s printed?

6. Is double f4 = 22; legal?

7. The following code stores a 20 in the variable j:
double j = 61/3;

What small change can you make to this single line of code to make it print the “real”
answer to the division?

8. System.out.println((double)(90/9));

9. System.out.println(4 + 6.0/4 + 5 * 3 – 3);

5-4

10. int p = 3;
double d = 10.3;
int j = (int)5.9;
System.out.println(p + p * d – 3 * j);

11. int p = 3;
double d = 10.3;
int j = (int)5.9;
System.out.println(p + p * (int)d – 3 * j);

The following code applies to 12 – 15:

int dividend = 12, divisor = 4, quotient = 0, remainder = 0;
int dividend2 = 13, divisor2 = 3, quotient2 = 0, remainder2 = 0;
quotient = dividend/divisor;
remainder = dividend % divisor;
quotient2 = dividend2 / divisor2;
remainder2 = dividend2 % divisor2;

12. System.out.println(quotient);

13. System.out.println(remainder);

14. System.out.println(quotient2);

15. System.out.println(remainder2);

16. Write a line of code in which you divide the double precision number d by an integer
variable called i. Type cast the double so that strictly integer division is done. Store
the result in j, an integer.

17. Suppose we have a line of code that says

final String M = “ugg”;

 Later in the same program, would it be permissible to say the following?

 M = “wow”;

6-1
Lesson 6…..Methods of the Math Class

One of the most useful methods of the Math class is sqrt() …which means square root. For
example, if we want to take the square root of 17 and store the result in p, do the following:

 double p = Math.sqrt(17);

Notice that we must store the result in a double…. p in this case. We must store in a double since
square roots usually don’t come out even.

Signature of a method:
Below we will give the description of some methods of the Math class… along with the
signatures of the method. First, however, let’s explain the meaning of signature (also called a
method declaration). Consider the signature of the sqrt() method:

 double sqrt(double x)
 | | |
 type returned method name type of parameter we send to the method

Method Signature Description
abs int abs(int x) Returns the absolute value of x
abs double abs(double x) Returns the absolute value of x
pow double pow(double b, double e) Returns b raised to the e power
sqrt double sqrt(double x) Returns the square root of x
ceil double ceil(double x) Returns next highest whole number from x
floor double floor(double x) Returns next lowest whole number from x
min double min(double a, double b) Returns the smaller of a and b
max double max(double a, double b) Returns the larger of a and b
min int min(int a, int b) Returns the smaller of a and b
max int max(int a, int b) Returns the larger of a and b

(For both min and max there are also versions that both accept and return types float,
short, and long. See Appendix C for more on these three data types.)

random double random() Returns a random double (range 0≤ r < 1)
round long round(double x) Returns x rounded to nearest whole number
PI double PI Returns 3.14159625…..

Now, we offer examples of each (most of these you can do on a calculator for verification):

1. double d = -379.22;
System.out.println(Math.abs(d)); //379.22

2. double b = 42.01;

double e = 3.728;
System.out.println (Math.pow(b, e)); //1126831.027

3. double d = 2034.56;

System.out.println(Math.sqrt(d)); //45.10609715

4. double d = 1.4;
System.out.println(Math.ceil(d)); //2.0

6-2

5. double d = -1.6;
System.out.println(Math.ceil(d)); //-1.0

6. double d = 1.4;

System.out.println(Math.floor(d)); //1.0

7. double d = -1.6;
System.out.println(Math.floor(d)); //-2.0

The last four examples illustrating floor and ceiling are best understood with the
following drawing:

Just think of the ceiling as it is in a house…
on top. Likewise, think of the floor as being
on the bottom.

Therefore, Math.ceil(-1.6) being -1 makes
perfect sense since -1 is above. Similarly, -2
is below -1.6 so it makes sense to say that -2
is Math.floor(-1.6).

ceiling

1

2

-2

-1

0

1.4

-1.6

floor

ceiling

floor

Figure 6-1 Relationship
of ceiling and floor

8. double d = 7.89;

System.out.println(Math.log(d)); //2.065596135 …log is base e.

9. double x = 2038.5;
double y = -8999.0;
System.out.println(Math.min(x,y)); //-8999.0

10. double x = 2038.5;
double y = -8999.0;
System.out.println(Math.max(x,y)); //2038.5

11. double x = 148.2;
System.out.println(Math.round(x)); //148

double x = 148.7;
System.out.println(Math.round(x)); //149

double x = -148.2;
System.out.println(Math.round(x)); //-148

double x = -148.7;
System.out.println(Math.round(x)); //-149

12. System.out.println(Math.PI); //3.14159265…

6-3

Advanced Math methods:
Below are some additional Math methods that advanced math students will find useful:

Method Signature Description
log double log(double x) Returns log base e of x
sin double sin(double a) Returns the sine of angle a… a is in rad
cos double cos(double a) Returns the cosine of angle a… a is in rad
tan double tan(double a) Returns the tangent of angle a… a is in rad
asin double asin(double x) Returns arcsine of x…in range -PI/2 to PI/2
acos double acos(double x) Returns arccosine of x…in range 0 to PI
atan double atan(double x) Returns arctan of x. in range -PI/2 to PI/2
toDegrees double toDegrees(double angRad) Converts radians into degrees
toRadians double toRadians(double angDeg) Converts degrees into radians

Exercise on Lesson 6

1. Write code that will take the square root of x and store the result in y.

2. Write code that will multiply the value of the integer j times the absolute value of the
integer m and then store the result in the integer k.

3. Is the following legal? If not, what would you do to make it legal?
int k = Math.abs(-127.5);

4. Write a statement that will print the result of 21.5.

5. System.out.println(Math.ceil(-157.2));

6. System.out.println(Math.floor(-157.2));

7. System.out.println(Math.ceil(157.2));

8. System.out.println(Math.floor(157.2));

9. System.out.println(Math.round(-157.2));

10. System.out.println(Math.ceil(-157.7));

6-4

11. System.out.println(Math.ceil(157));

12. System.out.println(Math.ceil(157.7));

13. Write a statement that will print the natural log of 18…. same as ln(18) on a calculator.

14. Write a line of code that multiplies double p times π and stores the result in b.

Project… Compute This

Create a new project called ComputeThis having a class called Tester. The main method of
Tester should calculate the value of the following formulas and present the answers as shown.

d1 = 3πsin(187°) + |cos(122°)| …Remember that the arguments of sin and cos must
 be in radians.

d2 = (14.72)3.801 + ln 72 …ln means log base e

The output of your code should appear as follows:

d1 = -0.618672237585067

d2 = 27496.988867001543

Verify these answers with a calculator.

7-1

Lesson 7…. Input from the Keyboard

We will consider how to input from the keyboard the three data types…. int, double, and String.

Inputting an integer:

Use the nextInt method to input an integer from the keyboard:
import java.io.*; //see “Imports necessary” on next page
import java.util.*;
public class Tester
{
 public static void main(String args[])

{
 Scanner kbReader = new Scanner(System.in); //see “Mysterious
 //objects” on next page
 System.out.print(“Enter your integer here. ”); //enter 3001
 int i = kbReader.nextInt();
 System.out.println(3 * i); //prints 9003
}

}

Inputting a double:

Use the nextDouble method to input a double from the keyboard:
import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])

{
 Scanner kbReader = new Scanner(System.in);
 System.out.print(“Enter your decimal number here. ”); //1000.5
 double d = kbReader.nextDouble();
 System.out.println(3 * d); //prints 3001.5
}

}

Inputting a String:

Use the next method to input a String from the keyboard:
import java.io.*;
import java.util.*;
public class Tester{
 public static void main(String args[])

{
 Scanner kbReader = new Scanner(System.in);
 System.out.print(“Enter your String here. ”); //Enter One Two
 String s = kbReader.next(); //inputs up to first white space
 System.out.println(“This is the first part of the String,… ” + s);
 s = kbReader.next();
 System.out.println(“This is the next part of the String,… ” + s);
}

}

7-2

Output would be as shown below:

 Enter your String here. One Two
 This is first part of the String,... One
 This is next part of the String,... Two

Multiple inputs:

In a similar way nextInt() and nextDouble() can be used multiple times to parse data
input from the keyboard. For example, if 34 88 192 18 is input from the keyboard, then
nextInt() can be applied four times to access these four integers separated by white space.

Inputting an entire line of text:

Inputting a String (it could contain spaces) from the keyboard using nextLine():
import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])

{
 Scanner kbReader = new Scanner(System.in);
 System.out.print(“Enter your String here. ”); //Enter One Two
 String s= kbReader.nextLine();
 System.out.println(“This is my string,… ” + s);
}

}

Output would be as shown below:

 Enter your String here. One Two
 This is my string,... One Two

Imports necessary:

We must import two classes,….java.io.* and java.util.* that provide methods for
inputting integers, doubles, and Strings. See Appendix I for more on the meaning of
“importing”.

Mysterious objects:

In the above three examples we used the following code:

 Scanner kbReader = new Scanner(System.in);

It simply creates the keyboard reader object (we arbitrarily named it kbReader)
that provides access to the nextInt(), nextDouble(), next(), and nextLine()
methods. For now just accept the necessity of all this…it will all be explained
later.

The Scanner class used here to create our keyboard reader object only applies
to1.5.0_xx or higher versions of Java. For older versions, see Appendix M for an
alternate way to obtain keyboard input.

7-3

An anomaly:
Using a single Scanner object, the methods nextInt(), nextDouble(), next(), and
nextLine() may be used in any sequence with the following exception:

It is not permissible to follow nextInt() or nextDouble() with nextLine(). If it is
necessary to do this, then a new Scanner object must be constructed for use with
nextLine() and any subsequent inputs.

Project… Going in Circles

The area of a circle is given by:

 area = π (r2)

Now, suppose we know the area and wish to find r. Solving for r from this equation
yields:

 r = √ (area / π)

Write a program (project and class both named RadiusOfCircle) that uses sqrt() and PI
from the Math class to solve for the radius of a circle. Use keyboard input to specify the
area (provide for the possibility of area being a decimal fraction).

Write out your solution by hand and then enter it into the computer and run. Before
inputting the area, put a prompt on the screen like this.

 What is the area? _ …(the underscore indicates the cursor waiting for input)

 Present your answer like this:

Radius of your circle is 139.4.

Project… What’s My Name?

From the keyboard enter your first and then your last name, each with its own prompt.
Store each in a separate String and then concatenate them together to show your full
name. Call both the project and the class FullName. When your program is finished
running, the output should appear similar to that below:

 What is your first name? Cosmo
 What is your last name? Kramer
 Your full name is Cosmo Kramer.

8-1

Lesson 8…The boolean Type and boolean Operators

Back in Lesson 2 we looked at three fundamental variable types… int, double, and String. Here,
we look at another very important type…..boolean. This type has only two possible values…
true or false.

Only two values:

Let’s look at some statements that could come out either true or false. Suppose we know
that x = 3 and also that y = 97. What could we say about the truth (or falseness) of the
following statements?

 ((x <10) AND (y = 97)) Both parts are true so the whole thing is true.

((x <10) AND (y = -3)) First part is true, second part is false, whole thing false

((x <10) OR (y = 97)) If either part is true (both are) the whole thing is true.

((x <10) OR (y = -3)) If either part is true (first part is) the whole thing true.

Correct syntax:

In the above examples there are three things we must change in order to have correct Java
syntax:

1. To compare two quantities…such as (y = 97) above we must instead do it this
way:

(y = = 97)….recall that a single “=” is the assignment operator.

Similarly, read y != 97 as “y is not equal to 97”.

2. In Java we don’t use the word “and” to indicate an AND operation as above.
We use “&&” instead……..((x <10) && (y = = 97))

3. In Java we don’t use the word “or” to indicate an OR operation as above. We

use “||” instead……..((x <10) | | (y = = 97))

Truth tables:

Here are truth tables that show how && and || work for various combinations of a and b:

a b (a && b)
false false false
false true false
true false false
true true true

 Table 8-1 AND-ing

a b (a || b)
false false false
false true true
true false true
true true true

 Table 8-2 OR-ing

Negation (not) operator:

Another operator we need to know about is the not operator (!). It is officially called the
negation operator. What does it mean if we say not true (!true)? … false, of course.

1. System.out.println(!true); //false
2. System.out.println(!false); //true
3. System.out.println(!(3 < 5)); //false
4. System.out.println(!(1 = = 0)); //true

8-2
Creation of booleans:

Create boolean variables as shown in the following two examples:
 boolean b = true;
 boolean z = ((p < j) && (x != c));

Use the following code for example 1 – 10 below:
 int x =79, y = 46, z = -3;
 double d = 13.89, jj = 40.0;
 boolean b = true, c = false;

1. System.out.println(true && false); //false

2. System.out.println(true && !false); //true

3. System.out.println(c | | (d > 0)); //true

4. System.out.println(!b || c); //false

5. System.out.println((x >102) && true); //false

6. System.out.println((jj = = 1) | | false); //false

7. System.out.println((jj = = 40) && !false); //true

8. System.out.println(x != 3); //true

9. System.out.println(!(x!=3)); //false

10. System.out.println(!!true); //true

Operator precedence:

Consider a problem like:

 System.out.println((true && false) | | ((true && true) | | false));

We can tell what parts we should do first because of the grouping by parenthesis.
However, what if we had a different problem like this?

 System.out.println(false && true || true);

Which part should we do first? The answers are different for the two different ways it
could be done. There is a precedence (order) for the operators we are studying in this
lesson (see Appendix H for a complete listing of operator precedence). The order is:

 ! = = != && ||

Example 1
System.out.println(true || false && false); //true

Do the false && false part first to get a result of false.
Now do true || false to get a final result of true.

8-3

Example 2

System.out.println(true && false || false); //false
Do the true && false part first to get a result of false.
Now do false || false to get a final result of false.

Using a search engine:

You can use your knowledge of Booleans on the Internet. Go to your favorite search
engine and type in something like,

 “Java script” and “Bill Gates”

and you will find only references that contain both these items.

On the other hand, enter something like,

 “Java script” or “Bill Gates”

and you will be overwhelmed with the number of responses since you will get references
that contain either of these items.

You should be aware that the various search engines have their own rules for the syntax
of such Boolean searches.

Now that we have learned to write a little code, it’s time to turn to another part of our Computer
Science education. Computers haven’t always been as they are today. Computers of just a few
years ago were primitive by today’s standards. Would you guess that the computers that your
children will use someday would make our computers look primitive? Take a few minutes now
to review a short history of computers in Appendix S.
.

Exercise for Lesson 8

In problems1 – 5 assume the following:
 int z = 23, x = -109;
 double c = 2345.19, v = 157.03;
 boolean a = false, s = true;

1. boolean gus = (x > 0) && (c = = v);
System.out.println(!gus);

2. System.out.println(a | | s);

3. System.out.println(((-1 * x) > 0) && !a);

4. boolean r = z = =x;
System.out.println(r | | false);

8-4

5. System.out.println(z!=x);

6. Fill in the following charts.
a b (!a && b) a b (a | | !b)
false false false false
false true false true
true false true false
true true true true

7. Assume b, p, and q are booleans. Write code that will assign to b the result of AND-

ing p and q.

8. Assign to the boolean variable w the result of OR-ing the following two things:
A test to see if x is positive: A test to see if y equals z:

9. What are the two possible values of a boolean variable?

10. Write a test that will return a true if a is not equal to b. Assume a and b are integers.

Store the result in boolean kDog.

11. Write the answer to #10 another way.

12. What is the Java operator for boolean AND-ing?

13. What is the Java operator for boolean OR-ing?

14. System.out.println((true && false) | | ((true && true) | | false));

15. System.out.println(true && true || false);

16. System.out.println(true || true && false);

17. System.out.println(false || true && false);

18. System.out.println(false && true || false);

9-1

Lesson 9….The if Statement

Now that we understand boolean quantities, let’s put them to use in an if statement, one of Java’s
most useful “decision-making” commands. Consider the following code:

Example 1:
 //Get a grade from the keyboard
 Scanner kbReader = new Scanner(System.in);
 System.out.print(“What is your grade? ”);
 int myGrade = kbReader.nextInt();

 //Make a decision based on the value of the grade you entered
 if (myGrade >= 70)
 {
 //Execute code here if the test above is true
 System.out.println(“Congratulations, you passed.”);
 }
 else
 {
 //Execute code here if the test above is false
 System.out.println(“Better luck next time.”);
 }

Leave off the else:

We do not necessarily always need the else part. Consider the following code without an
else.

Example 2:

 Scanner kbReader = new Scanner(System.in);
 System.out.print(“What state do you live in? ”);
 String state = kbReader.nextLine(); //get state from keyboard

System.out.print(“What is the price? ”);
double purchasePrice = kbReader.nextDouble(); //get price from keyboard

double tax = 0;

 if ((state = = “Texas”) || (state = = “Tx”))
 {
 //Execute code here if test above is true
 tax = purchasePrice *.08; //8% tax
 }
 double totalPrice = purchasePrice + tax;
 System.out.println(“The total price is ” + totalPrice + “.”);

It won’t work!

There is just one difficulty with the above code in Example 2. It won’t work! The
problem is with how we are trying to compare two Strings. It cannot be as follows:
 state = = “Texas”

Rather, we must do it this way:
 state.equals(“Texas”)

9-2

A good way to cover all the bases in the event someone mixes upper and lower case on
the input is as follows:
 (state.equalsIgnoreCase(“Texas”) | | state.equalsIgnoreCase(“Tx”))

What? No braces?

Braces are not needed if only one line of code is in the if or else parts. Likewise, the
absence of braces implies only one line of code in if or else parts.

Example 3:
int groovyDude = 37;
if (groovyDude = =37)

 groovyDude++; //this line is executed if test is true
System.out.println(groovyDude); //38

Example 4:

int groovyDude = 105;
if (groovyDude = =37)

 groovyDude++; //this line is not executed if test is false
System.out.println(groovyDude); //105

The else if:

Multiple ifs can be used in the same structure using else if.

Example 5:
 //Get a grade from the keyboard
 Scanner kbReader = new Scanner(System.in);
 System.out.println(“What is your grade? ”);
 int theGrade = kbReader.nextInt();

 if (theGrade>=90)
 {
 System.out.println(“You made an A.”);
 }
 else if (theGrade>=80)
 {
 System.out.println(“You made a B.”);
 }
 else if (theGrade>=70)
 {
 System.out.println(“You made a C.”);
 }
 else if (theGrade>=60)
 {
 System.out.println(“You made a D.”);
 }
 else
 {
 System.out.println(“Sorry, you failed.”);
 }

9-3

Exercise on Lesson 9

Use the following code for problems 1 – 10 and give the value of true_false for each:
 int i = 10, j = 3;
 boolean true_false;

1. true_false = (j > i);

2. true_false = (i > j);

3. true_false = (i= = j);

4. true_false = ((j <= i) | | (j >= i));

5. true_false = ((i > j) && (j = = 0));

6. true_false = ((j < 50) | | (j != 33));

7. true_false = (!(j >= 0) | | (i <= 50));

8. true_false = (!(! (!true)));

9. true_false = (5 < = 5);

10. true_false = (j != i);

11. Write a statement that will store a true in boolean b if the value in the variable m is 44 or

less.

12. Write a statement that will store a false in boolean b if the value in r is greater than 17.

13. What is returned by the following expression? (Recall that the precedence order of
logical operators is !, &&, and finally | |.)

!((2>3) | | (5= =5) && (7>1) && (4<15) | | (35<=36) && (89!=34))

In problem 14 – 16 what is the output?

14. String s1 = “school BUS”;
if (s1.equals(“school bus”))
 System.out.println(“Equal”);
else
 System.out.println(“Not equal”);

15. String s1 = “school BUS”;
if (s1.equalsIgnoreCase(“school bus”))
System.out.println(“Equal”);
else
System.out.println(“Not equal”);

9-4
16. int j = 19, m = 200;

if (j= =18)
 m++;
 j++;
System.out.println(m);
System.out.println(j);

17. Write a statement that will store a false in boolean b if the value in g is not equal to 34.

18. Write a statement that will store a true in boolean b if integer k is even, false if it is odd.

19. Write a program that inputs a String from the keyboard after the prompt, “Enter your
password”. If it’s entered exactly as “XRay”, printout “Password entered successfully.”;
otherwise, have it printout “Incorrect password.”

20. What is output by the following “nested ifs” code?
int k = 79;
if (k>50)
{
 if (k<60)
 {System.out.println(“One”);}
 else
 { System.out.println(“Two”);}
}
else
{
 if (k>30)
 System.out.println(“Three”);
 else
 System.out.println(“Four”);
}

Project… Even or Odd?
Create a new project called EvenOrOdd containing a class called Tester. In the main method of
Tester print a prompt that says, “Enter an integer:” Input the user’s response from the keyboard,
test the integer to see if it is even or odd (use the modulus operator % to do this), and then print
the result as shown below (several runs are shown).

Enter an integer: 28
The integer 28 is even.

Enter an integer: 2049
The integer 2049 is odd.

Enter an integer: -236
The integer -236 is even.

10-1

Lesson 10…..The switch Statement and char

The if statement is the most powerful and often used decision-type command. The switch
statement is useful when we have an integer variable that can be one of several quantities. For
example, consider the following menu scenario (enter and run this program):

 //This code should be placed inside the main method of a class
 System.out.println(“Make your arithmetic selection from the choices below:\n”);

 System.out.println(“ 1. Addition”);

System.out.println(“ 2. Subtraction”);
System.out.println(“ 3. Multiplication”);
System.out.println(“ 4. Division\n”);

System.out.print(“ Your choice? ”);

Scanner kbReader = new Scanner(System.in);
int choice = kbReader.nextInt();

System.out.print(“\nEnter first operand. ”);
double op1 = kbReader.nextDouble();
System.out.print(“\nEnter second operand.”);
double op2 = kbReader.nextDouble();

System.out.println(“”);

switch (choice)
{
 case 1: //addition

System.out.println(op1 + “ plus ” + op2 + “ = ” + (op1 + op2));
break;

 case 2: //subtraction
System.out.println(op1 + “ minus ” + op2 + “ = ” + (op1 - op2));
break;

 case 3: //multiplication
System.out.println(op1 + “ times ” + op2 + “ = ” + (op1 * op2));
break;

 case 4: //division
System.out.println(op1 + “ divided by ” + op2 + “ = ” + (op1 / op2));
break;

 default:
 System.out.println(“Hey dummy, enter only a 1, 2, 3, or 4!”);

}

The optional default:

The default command is optional. You can use it if there might be a possibility of the
value of choice not being one of the cases.

Give me a break:
The break statements are normally used. Try leaving them out and see what happens
here. In the next section we will look at an application in which they are omitted.

10-2

Basically, break jumps us out of the switch structure and then code execution continues
with the first line immediately after the closing switch brace. Specifically, you might
want to omit the break within the case 1: section. If choice is 1 then the result will be that
it prints the answer for both addition and subtraction.

The next experiment you might want to do is to leave the parenthesis off of (op1 + op2)
in the case 1: section. Since op1 + op2 is no longer in parenthesis, the plus between them
no longer means addition. It now means concatenation since all the activity to the left of
this point in the code was also String concatenation.

Leaving off the break:

Now, let’s look at an example where we intentionally omit break:

//Suppose at this point in the program we have an integer variable, j. If j equals 1,
//2, or 3 we want to set String variable s to “low” and if j equals 4, 5, or 6 we want
//to set s to “high”. If j equals 7, set s to “lucky”.
switch (j)
{

 case 1:
 case 2:
 case 3:
 s = “low”;
 break;
 case 4:
 case 5:
 case 6:
 s = “high”;
 break;
 case 7:
 s = “lucky”;

}

A new data type… char:

Before we look further at the switch statement, we must look at a new data type, char.
This stands for character. Following is a typical way to declare and initialize a character:

 char ch = ‘h’;

Notice that a character is always enclosed in single quotes. Characters can be
anything, even numbers or symbols:

 char x = ‘6’; char pp = ‘@’;

int and char are permissible types:
switch() statements primarily switch on integers or characters (short and byte types can
also be used, but rarely are). Modify the example on the previous page to switch on a
char instead of int. See the next page for the necessary modifications:

10-3

System.out.println(“Make your arithmetic selection from the choices below:\n”);

 System.out.println(“ A. Addition”);

System.out.println(“ S. Subtraction”);
System.out.println(“ M. Multiplication”);
System.out.println(“ D. Division\n”);

System.out.print(“ Your choice? ”);

Scanner kbReader = new Scanner(System.in);
String choice = kbReader.nextLine();
//char ch = choice; //You would think this would work…but it doesn’t.
char ch = choice.charAt(0); //you just learned another String method.

System.out.print(“\nEnter first operand. ”);
double op1 = kbReader.nextDouble();
System.out.print(“\nEnter second operand .”);
double op2 = kbReader.nextDouble();

System.out.println(“ ”);

switch (ch)
{
 case ‘A’: //addition
 case ‘a’: //Notice we are providing for both capital A and little a.

System.out.println(op1 + “ plus ” + op2 + “ = ” + (op1 + op2));
break;

 case ‘S’: //subtraction
 case ‘s’:

System.out.println(op1 + “ minus ” + op2 + “ = ” + (op1 - op2));
break;

 case ‘M’: //multiplication
 case ‘m’:

System.out.println(op1 + “ times ” + op2 + “ = ” + (op1 * op2));
break;

 case ‘D’: //division
 case ‘d’:

System.out.println(op1 + “ divided by ” + op2 + “ = ” + (op1 / op2));
break;

 default:
 System.out.println(“Hey dummy, enter only a A, S, M, or D!”);

}

10-4

Exercise on Lesson 10

1. What are two permissible data types to use for x in the following?
switch (x){ . . . }

2. What is the output of the following code?

int x = 3, p = 5, y = -8;
switch(x)
{
 case 2:
 p++;
 case 3:
 case 4:
 y+=(--p);
 break;
 case 5:
 y+=(p++);
}
System.out.println(y);

3. Write a switch structure that uses the character myChar. It should increment the integer
variable y if myChar is either a capital or small letter G. It should decrement y if myChar
is either a capital or a small letter M. If myChar is anything else, add 100 to y.

4. What is output by the following code?

int z = 2, q = 0;
switch(z)
{
 case 1:
 q++;
 case 2:
 q++;
 case 3:
 q++;
 case 4:
 q++;
 default:
 q++;
}
System.out.println(--q);

5. Write a line of code that declares the variable chr as a character type and assigns the

letter z to it.

6. What is output by the following?
int x = 10, y = 12;
System.out.println(“The sum is ” + x + y);
System.out.println(“The sum is ” + (x + y));

7. Convert the following code into a switch statement.

if(speed = = 75)

10-5
{
 System.out.println(“Exceeding speed limit”);
}
else if((speed = = 69) || (speed = = 70))
{
 System.out.println(“Getting close”);

}
else if(speed = = 65)
{
 System.out.println(“Cruising”);
}
else
{
 System.out.println(“Very slow”);

}

8. Is default a mandatory part of a switch structure?

9. Write a line of code that converts String s = “X” into a character called chr.

Project…Weight on Other Planets

Write a program that will determine the user’s weight on another planet. The program should
ask the user to enter his weight (on earth) via the keyboard and then present a menu of the
other mythical planets. The user should choose one of the planets from the menu, and use a
switch (with an integer) statement to calculate the weight on the chosen planet. Use the
following conversion factors to determine the user’s weight on the chosen planet.

Planet Multiply weight by
Voltar 0.091
Krypton 0.720
Fertos 0.865
Servontos 4.612

A typical output screen will be similar to the following:

What is your weight on the Earth? 135

1. Voltar
2. Krypton
3. Fertos
4. Servontos

 Selection? 1

Your weight on Voltor would be 12.285

11-1

Lesson 11…..The for-Loop

One of the most important structures in Java is the “for-loop”. A loop is basically a block of code
that is repeated with certain rules about how to start and how to end the process.

Simple example:

Suppose we want to sum up all the integers from 3 to 79. One of the statements that will
help us do this is:

 sum = sum + j;

However, this only works if we repeatedly execute this line of code, …first with j = 3,
then with j = 4, j = 5, …and finally with j = 79. The full structure of the for-loop that
will do this is:

 int j = 0, sum = 0;
 for (j = 3; j <= 79; j++)
 {

sum = sum + j;
System.out.println(sum); //Show the progress as we iterate thru the loop.

 }

 System.out.println(“The final sum is ” + sum); // prints 3157

Three major parts:

Now let’s examine the three parts in the parenthesis of the for-loop.

Initializing expression….j = 3 If we had wanted to start summing at 19, this part
would have read, j = 19.

Control expression….j <= 79 We continue looping as long as this boolean
expression is true. In general this expression can be any boolean expression. For
example, it could be:

count = = 3 s + 1 < alphB s > m +19 etc.

Warning: There is something really bad that can happen here. You must write
your code so as to insure that this control statement will eventually become false,
thus causing the loop to terminate. Otherwise you will have an endless loop which
is about the worst thing there is in programming.

Step expression… j++ This tells us how our variable changes as we proceed
through the loop. In this case we are incrementing j each time; however, other
possibilities are:

j-- j = j + 4 j = j * 3 etc.

For our example above, exactly when does the increment …j++ occur? Think of
the step expression being at the bottom of the loop as follows:

11-2

for (j = 3; j <= 79; . . .)

 {
 … some code …

 j++; //Just think of the j++ as being the last line of code inside the
 } //braces.

Special features of the for-loop:

The break command:
If the keyword break is executed inside a for-loop, the loop is immediately exited
(regardless of the control statement). Execution continues with the statement
immediately following the closing brace of the for-loop.

Declaring the loop variable:

It is possible to declare the loop variable in the initializing portion of the
parenthesis of a for-loop as follows:
 for (int j = 3; j <= 79; j++)
 {
 . . .
 }

In this case the scope of j is confined to the interior of the loop. If we write j in
statement outside the loop (without redeclaring it to be an int), it won’t compile.
The same is true of any other variable declared inside the loop. Its scope is limited
to the interior of the loop and is not recognized outside the loop as is illustrated in
the following code:

 for (j = 3; j <= 79; j++)
 {
 double d = 102.34;

 . . .

}
System.out.println(d); //won’t compile because of this line

No braces:

If there is only one line of code or just one basic structure (an if-structure or
another loop) inside a loop, then the braces are unnecessary. In this case it is still
correct (and highly recommended) to still have the braces…but you can leave
them off.

 for (j = 3; j <= 79; j++) is equivalent to for (j = 3; j <= 79; j++)
 sum = sum + j; { sum = sum + j; }

When the loop finishes:

It is often useful to know what the loop variable is after the loop finishes:

11-3

 for (j = 3; j <= 79; j++)
 {
 . . . some code . . .
 }
 System.out.println(j); //80

On the last iteration of the loop, j increments up to 80 and this is when the control
statement j <= 79 finally is false. Thus, the loop is exited.

Nested loops:

“Nested loops” is the term used when one loop is placed inside another as in the
following example:

for(int j = 0; j < 5; j++)
{
 System.out.println(“Outer loop”); // executes 5 times
 for(int k = 0; k < 8; k++)
 {
 System.out.println(“...Inner loop”); // executes 40 times
 }
}

The inner loop iterates eight times for each of the five iterations of the outer loop.
Therefore, the code inside the inner loop will execute 40 times.

**

Warning:

A very common mistake is to put a semicolon immediately after the parenthesis of a for-
loop as is illustrated by the following code:

 for (j =3; j <= 79; j++);
 {
 //This block of code is only executed once because of the inappropriately
 //placed semicolon above.
 . . . some code . . .
 }

11-4

Exercise for Lesson 11

In each problem below state what is printed unless directed otherwise.

1. int j = 0;
for (int g = 0; g <5; g++)

j++;
 System.out.println(j);

2. int s = 1;
for (int j = 3; j >= 0; j--)
{
 s = s + j;
}
System.out.println(s);

3. int p = 6;

int m = 20, j;
for (j = 1; j < p; j++); //Notice the semicolon on this line
{
 m = m + j * j;
}
System.out.println(m);

4. double a = 1.0;
for (int j = 0; j < 9; j++)
{
 a*=3;
}
System.out.println(j);

5. for (int iMus = 0; iMus < 10; iMus++)
{
 int b = 19 + iMus;
}

 System.out.println(b);

6. double d = 100.01;
int b = 0;
for (int iMus = 0; iMus < 10; iMus++)
 b = 19 + iMus;
 d++;
System.out.println(d);

7. Write a for-loop that will print the numbers 3, 6, 12, and 24

8. Write a for-loop that will print the numbers 24, 12, 6, 3

11-5
9. int k = 0;

for(int j = 0; j <= 10; j++)
{
 if (j = = 5)
 {
 break;
 }
 else
 {
 k++;
 }
}
System.out.println(k);

10. What is the name of the part of the parenthesis of a for-loop that terminates the loop?

11. What is the value of j for each iteration of the following loop?

int i, j;
for(i = 10; i <= 100; i = i+ 10)
 j = i / 2;

12. What is the value of r after the following statements have executed?
int r, j;
for (j = 1; j < 10; j = j * 2)
r = 2 * j;

13. What is the worst sin you can commit with a for-loop (or any loop for that matter)?

14. How many times does the following loop iterate?
for (p = 9; p <= 145; p++)
{
 . . .
}

Project… Name Reversal
Write a program that will allow a user to input his name. The prompt and input data would look
something like this:

 Please enter your name. Peter Ustinov

Using a for-loop and the String method, substring(…), produce a printout of the reversal of the
name.

For example, the name Peter Ustinov would be:

 vonitsu retep

Notice that the printout is in all lower-case. Use the String method, toLowerCase() to
accomplish this.

11-6

for-Loop… Contest Type Problems

1. What is output?

A. 0
B. 10
C. 15
D. 5
E. None of these

int sum=0;
for (int k=0; k<5; k++) {
 sum+=k;
}
System.out.println(sum);

2. What is output?

A. 66
B. 100
C. 101
D. 99
E. None of these

double kk = 3;
int j = 0;
for(j = 0; j <= 100; j++) {
 kk = kk + Math.pow(j, 2);
 ++kk;
}
System.out.println(j);

3. What is the final value of p?

A. 10
B. 4
C. 5
D. 12
E. None of these

double p = 0;
for(int m =10; m > 6; --m)
{
 if(m= =7) {
 p = p+m;
 }
 else {
 ++p;
 }
}

4. Which of the following will print the set of odd integers starting at 1 and ending at 9?

A. for(int j=0; j<=9; j++) { System.out.println(j); }
B. for(int j=1; j<10; j= j+2) { System.out.println(j); }
C. for(int j=1; j<=9; j+=1) { System.out.println(j); }
D. for(int j=1; j<=9; j+=2) { System.out.println(j); }
E. Both B and D

5. What is output?

A. 4950
B. 101
C. 100
D. Nothing, it’s an endless loop
E. None of these

double x = 0;
for(int b=0; b<101; b++)
{
 x = x + 1;
 b--;
}
System.out.println(x);

6. What is output?

A. 5 6
B. 6 6
C. 5 10
D. 5 5
E. None of these

int p, q=5;
for(p=0; p<5; p++); //notice the semicolon
 q = q+1;
System.out.println(p + “ ” + q);

11-7
7. What is output?

A. 98
B. 3939
C. 109
D. 4039
E. None of these

int j, k;
int count = 0;
for(j=0; j<4; j++)
{
 for(k = 0; k < 10; k++)
 {
 count++;
 }
}
System.out.print(count--);
System.out.println(count);

12-1

Lesson 12…..The while & do-while Loops

The while loop is basically the same as the for-loop except the initializing and step expressions
are not part of the while-loop basic structure. In the following code we show the basic structure
(skeleton) of the while-loop:
 while(j <= 79)
 {
 … some code that we want repeated…
 }

We notice in the above code that the only part similar to the for-loop is the control expression
j <= 79. The initializing and step expressions are absent. As with the for-loop, the while-loop
keeps repeating as long as the control statement is true.

Summing numbers:

Now, let’s actually do something with a while-loop. We will begin with a for-loop that
sums the numbers from 3 to 79 and then perform this same task with a while-loop:

 int sum = 0, j;
 for (j = 3; j <= 79; j++)
 {
 sum = sum + j;
 }
 System.out.println(sum); //3157

An equivalent while-loop:

Here’s a while-loop that does the same thing:
 int sum = 0;
 int j = 3; //initializing expression…not part of loop.
 while (j <= 79) //control expression…fundamental part of loop
 {
 sum = sum + j;
 j++; //step expression…we have to remember to put this in.
 //It’s not part of the basic “skeleton” of a while-loop.
 }
 System.out.println(sum);

The do-while loop:

A do-while loop is exactly the same as a while-loop except the control expression is at the
bottom of the loop rather that at the top as it is with the while-loop. Following is the
skeleton of a do-while loop:

 do
 {
 …some code that gets repeated…
 }
 while(j<= 79);

Note that while is not inside the braces. Also, notice the semicolon. It is a common
mistake to leave it off.

We will now re-implement the for-loop above that sums from 3 to 79 as a do-while loop:

12-2

int sum = 0;
 int j = 3; //initializing expression

do
{
 sum = sum + j;
 j++; //step expression
}while (j <= 79); //control expression

 System.out.println(sum); //3157

What’s the difference?

The main difference between the while loop and the do-while loop is where the test for
staying in the loop is made (the control expression).

 while-loop test is at the top of the loop
 do-while-loop test is at the bottom of the loop

The break statement:

If break is encountered inside a loop, the loop terminates regardless of the status of the
control statement. Code execution continues with the first line of code following the loop
structure.

The continue statement:

If continue is encountered inside any loop (for, while, or do-while), all remaining code in
the loop is skipped for this particular iteration; however, looping continues in accordance
with the control expression.

This is illustrated with the following code:

 int j = 0, boxer =11;
 while(j <10)
 {
 j++;
 if (j != 5)
 {
 continue;
 }
 boxer = boxer + j;

}
System.out.println(boxer); //16

No braces:

If a while loop has no braces then it is understood that only the very next line of code (or
structure such as another loop, switch, or if structure) is to be iterated (repeated).
Consider the following code examples:

 while(control expression) …is equivalent to… while(control expression)
 pk = pk +2; {
 x = 97; pk = pk +2;

 }
 x = 97;

12-3

Exercise for Lesson 12

1. Show the basic skeleton of a while loop.

2. Show the basic skeleton of a do-while loop.

3. Implement the following for-loop as a while loop.
int m;
for (m = 97; m <= 195; m++)
{
 k = k * k + 3 * m;
 p = p + m +1;
}

4. Implement the following for loop as a do-while loop.
for (int v = 2; v <= 195; v*=3)
{
 k = k * k + 3 * v;
 q = Math.sqrt(q + v +1);
}

5. What is the loop control expression in the code segment below?
while (!done)
{
 if (i < 1)
 {done = true;}
 i--;
}

6. What is the error in the code segment below?
do;
{
 if (i < 1)
 {done = true;}
 i--;
}while (!done);

7. How many times will the loop below iterate?

int j = 0;
while(j < 50)
{
 System.out.println(“Hello World!”);
}

12-4

8. How many times will the loop below iterate?
int j = 25;
while (j <= 100 | | j >= 25)
{
 System.out.println(“Temp variable =” + j);
 j++;
}

9. Identify the error(s) in the code below:

j = 155
while (!done)
{
 if (j <= 25)
 done = true;
 j = j – 5;
};

10. What will be the output of the following code:

int i = 0, j = 0;
while(i <= 3)
{
 for(j = 0; j <=2; j++)
 {
 System.out.print(i + “,” + j + “ ”);
 }
 i++;
}

11. What command would you use if something unusual happens in one of your loops and

you wish to exit prematurely (even before the control expression says you can)?

12. What loop structure would you use if you want to guarantee that a test condition of the

control expression be tested before the block of code inside the loop could execute?

13. What is printed when the following code runs?
double m = 92.801;
int j = 0;
do
{
 j = j + 2;
 if (j > -100)
 continue;

m+=3;
}while(j < 6);
System.out.println(m);

14. Write a program that will prompt the user to enter an integer. The program should square

the number and then print the squared number. Repeat this process until 0 is entered as
input. Use a do-while-loop to do this.

12-5

while & do-while loops… Contest Type Problems

1. Which of the following imitates the action of
the for-loop to the right?

A. int j =0;
while(j<100){ j++; …some code…}

B. int j=0;
 while(j<100){…some code… j++;}
C. int j=0;

do{…some code… j++;}while(j<100);
D. Both B and C
E. Both A and B

for(int j=0; j<100; j++)
{
 … some code …
}

2. How many times does this loop iterate?

A. 0
B. 1
C. 2
D. Infinite number of times
E. Both A and B

int z = 19;
while(z < 20)
{
 if(z<100)
 continue;
 z++;
}

3. What is the output if the initial value of k
and p are both 0?

A. 0
B. 3
C. 2
D. 1
E. None of these

do {
 if(k= =1)
 {
 p+=3;
 }
 k++;
 p--;
}while(k<3);
System.out.println(p);

4. How many times does this loop iterate if the
value of the boolean b is not known?

A. None
B. 2
C. Can’t be determined
D. Infinite number of times
E. None of these

boolean p = true;
int sum=0;
while(p)
{
 sum+=5;
 if(b || !b)
 break;
}

5. What type of loop would you use if the condition for staying in the loop needs to be tested
before the loop iterates?

A. for-loop
B. while-loop
C. do-while loop
D. All of these
E. Both A and B

13-1

Lesson 13….ASCII and More on char

Things you can’t do:

Character type char and String types can’t be stored into each other. The following lines
of code are illegal:

char ch = aString; //where aString is a String…..illegal
char ch = “A”; //illegal

String x = xChar; //where xChar is a char……..illegal
String x = ‘X’; //illegal

Surprisingly legal:

Strangely enough the following is legal:

int x =1;
char ch = ‘A’; //ASCII code for ‘A’ is 65… (more on ASCII below)
int y = x + ch; //This is legal!
System.out.println(y); //66

int z = ch; //This is legal!

Illegal!

Storing an int type into a char is illegal.

char ch = j; //Illegal…assuming j is an int

 Why is this illegal? It’s because char can take on Unicode values from 0 – 65536 (two

bytes)while int types can go over 2 billion. The compiler justly complains about “possible
loss of precision” and refuses to do it. Use casting as a way around this.

 char ch = (char)j; //Legal…assuming j is an int and less than 65,536

ASCII (pronounced “ask-key”) codes:

Why does the code in middle section above work? It’s because characters are just
numbers. For example, capital A is stored as a 65. That’s why we got 66 above. All
characters (letters, numbers, symbols, etc) are stored as numbers. Some ASCII codes that
you should know are:

Character ASCII Character ASCII Character ASCII
0 48 A 65 a 97
1 49 B 66 b 98
2 50 C 67 c 99
.
8 56 Y 89 y 121
9 57 Z 90 z 122

For more on ASCII codes, see Appendix D.

13-2

Conversion between Strings and characters:

Let’s look back at the top section of this page. What do you do if you absolutely have to
convert a String into a character or vice versa?

a. Conversion of a String into a character
String s = “W”;
char a = s.charAt(0); //a now equals ‘W’

b. Conversion of a character into a String
char a = ‘X’;
String s = “” + a; //concatenation of a string and a character is permit-

 //ed. The result is a String. The trick is to make the
 //String we are concatenating an empty String (“”).

Conversion from capital to small:

A way to convert capital-letter characters into small-letter characters is to add 32. Look in
the chart above…capital A is 65……small a is 97…….a difference of 32.

char bigLetter = ‘H’;
char smallLetter = (char)(bigLetter + 32); //(bigLetter + 32) is an int that must be

 //cast…see # 3 on previous page.
System.out.println(smallLetter); //h

What are you? (just ask)

We can ask the following questions of a character (answers are always true or false),
c. “are you a digit?”

char ch = ‘a’;
System.out.println(Character.isDigit(ch)); //false

char ch = ‘3’;
System.out.println(Character.isDigit(ch)); //true

d. “are you a letter?”

char ch = ‘a’;
System.out.println(Character.isLetter(ch)); //true

char ch = ‘3’;
System.out.println(Character.isLetter(ch)); //false

e. “are you a letter or a digit?”

char ch = ‘a’;
System.out.println(Character.isLetterOrDigit(ch)); //true

char ch = ‘3’;
System.out.println(Character.isLetterOrDigit(ch)); //true

f. “are you whitespace?”….(new line character, space and tabs are whitespace)

13-3
char ch = ‘ ’;

 System.out.println(Character.isWhitespace(ch)); //true

char ch = ‘p’;
 System.out.println(Character.isWhitespace(ch)); //false

g. “are you lowercase?”

char ch = ‘a’;
System.out.println(Character.isLowerCase(ch)); //true

char ch = ‘A’;
System.out.println(Character.isLowerCase(ch)); //false

h. “are you uppercase?”

char ch = ‘a’;
System.out.println(Character.isUpperCase(ch)); //false

char ch = ‘A’;
System.out.println(Character.isUpperCase(ch)); //true

Conversion to upper case:

We can convert a character to upper case as follows:
char ch = ‘d’;
char nn = Character.toUpperCase(ch);
System.out.println(nn); //D

Conversion to lower case:

We can convert a character to lower case as follows:
char ch = ‘F’;
char nn = Character.toLowerCase(ch);
System.out.println(nn); //f

13-4

Exercise on Lesson 13

1. What is the ASCII code for ‘A’?

2. What is the ASCII code for ‘Z’?

3. What is the ASCII code for ‘a’?

4. What is the ASCII code for ‘z’?

5. How many letters are in the English alphabet?

6. What is the ASCII code for the character ‘0’ (this is the number 0 and not the letter O)?

7. What is the ASCII code for the character ‘9’?

8. What does the following code do?
char c;
for (int j = 97; j <= 122; j++) {
 c = (char)(j –32);
 System.out.print(c);
}

9. What does the following code do?
String s = “Alfred E. Neuman”;
char ch;
for (int x = 0; x < s.length(); x++) {
 ch = s.charAt(x);
 if ((ch <= 90) && (ch>=65))
 ch = (char)(ch + 32);
 System.out.print(ch);
}

10. Write code that will convert char a into a String.

11. Write code that will convert String p into a character. (p consists of just one letter.)

12. Is this legal?
char ch = ‘V’;
String sd = ch;

13-5

13. Is this legal?
char ch = ‘V’;
char x = (char)(ch + 56);

14. Is this legal?
char aa = “X”;

15. char k = ‘B’;
System.out.println(k + 3); //What’s printed?

16. char k = ‘B’;
System.out.println((char)(k + 3)); //What’s printed?

17. Write code that will insure that an uppercase version of char boy is stored in char cv.

18. Write code that will insure that a lowercase version of char boy is stored in char cv.

19. If you have a character called bv, what could you do to determine if it’s a digit?

20. If you have a character called bv, what could you do to determine if it’s a letter?

21. If you have a character called bv, what could you do to determine if it’s an uppercase

character?

22. If you have a character called bv, what could you do to determine if it’s either a letter or a

digit?

23. If you have a character called bv, what could you do to determine if it’s a lowercase

character?

24. Describe what the following code does.
for(int j = 0; j <= 127; j++)
{
 char ch = (char)j;
 if (Character.isWhitespace(ch))
 System.out.println(j);
}

14-1

Lesson 14…..Binary, Hex, and Octal

We will examine four different number systems here,…decimal, binary, hexadecimal (hex), and
octal. In your study of these number systems it is very important to note the similarities of each.
Study these similarities carefully. This is ultimately how you will understand the new number
systems.

Decimal, base 10

There are only 10 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Note that even though this is base 10, there is no single digit for 10. Instead we use
two of the permissible digits, 1 and 0 to make 10.

Positional value: Consider the decimal number 5,402.

1000 100 10 1
103 102 101 100

5 4 0 2

2 * 1 = 2
0 * 10 = 0
4 * 100 = 400
5 * 1000 = 5000
 5402

Binary, base 2

There are only 2 digits in this system:
 0, 1

Note that even though this is base 2, there is no single digit for 2. Instead we use two
of the permissible digits, 1 and 0 to make 10bin (2dec).

Positional value: Consider the conversion of binary number 1101bin to decimal form.

 8 4 2 1
 23 22 21 20

 1 1 0 1

1 * 1 = 1
0 * 2 = 0
1 * 4 = 4
1 * 8 = 8
 13dec

Bits and Bytes: Each of the positions of 1101bin is called a bit… it’s a four-bit
number. When we have eight bits (example, 10110101bin) we call it a byte. If we say
that a computer has 256mb of memory, where mb stands for megabytes, this means it

14-2
has 256 million bytes. See Appendix Y for more on kilobytes, megabytes, and
gigabytes, etc.

Hexadecimal (hex), base 16

There are only 16 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 | | | | | |
 10 11 12 13 14 15

Note that even though this is base 16, there is no single digit for 16. Instead we use
two of the permissible digits, 1 and 0 to make 10hex (16dec).

Positional value: Consider the conversion of hex number 5C02hex to decimal form.

 4096 256 16 1
 163 162 161 160

 5 C 0 2

 2 * 1 = 2
 0 * 16 = 0
12 * 256 = 3072
 5 * 4096 = 20480
 23554dec

Octal, base 8

There are only 8 digits in this system:
 0, 1, 2, 3, 4, 5, 6, 7

Note that even though this is base 8, there is no single digit for 8. Instead we use two
of the permissible digits, 1 and 0 to make 10oct (8dec).

Positional value: Consider the conversion of octal number 5402oct to decimal form.

512 64 8 1
83 82 81 80

5 4 0 2

2 * 1 = 2
0 * 8 = 0
4 * 64 = 256
5 * 512 = 2560
 2818dec

Following are examples that show how we can use these different number systems with Java.

Store a hex number:

int x = 0x4CB3; //the leading 0x indicates hex format
System.out.println(x); //19635 …Notice it automatically prints in decimal form

14-3
Store an octal number:

int x = 0734; //the leading 0 indicates octal format
System.out.println(x); //476 …Notice it automatically prints in decimal form

Convert an integer variable to a hex String:

int x = 3901;
System.out.println(Integer.toHexString(x)); //f3dhex

 //…or Integer.toString(x, 16);

Convert an integer variable to a binary String:

int x = 3901;
System.out.println(Integer.toBinaryString(x)); // 111100111101bin
 //…or Integer.toString(x, 2);

Convert an integer variable to an octal String:
int x = 3901;
System.out.println(Integer.toOctalString(x)); //7475oct

 //…or Integer.toString(x, 8);

Notice in the last three examples above the following method was an alternate way to convert
bases:

String s = Integer.toString(i, b);

The first parameter i is of type int and b is the base to which we wish to convert. b (also
an int type) can be any base ranging from 2 to 36. Just as for hexadecimal numbers where
we use the letters A – F, the bases higher than 16 (hex) use the remaining letters of the
alphabet. For example, Integer.toString(8162289, 32) returns “7p2vh”.

Base conversion using parseInt:

It is also possible to go from some strange base (in String form) back to a decimal int
type. For example, Integer.parseInt(“3w4br”, 35) converts 3w4br35 into 5879187dec.

A technique for converting 147 from decimal to binary:

2 147 ; 2 divides into 147 73 times with a remainder of
2 73 1 ;1. 2 divides into 73, 36 times with a remainder of

 2 36 1 ;1. 2 divides into 36, 18 times with a remainder of
 2 18 0 ;0. 2 divides into 18, 9 times with a remainder of
 2 9 0 ;0. etc.
 2 4 1
 2 2 0
 2 1 0
 0 1 Now list the 1’s and 0’s from bottom to top. 10010011bin = 147dec

A technique for converting 3741 from decimal to hex:

 16 3741 ;divide 3741 by 16. It goes 233 times with a
 16 233 13 ;remainder of 13.

16 14 9
 0 14

14-4

 Now list the numbers from bottom to top. Notice, when listing the 14 we
 give its hex equivalent, E, and for 13 we will give D.
 E9Dhex = 3741dec

An octal multiplication example (47oct * 23oct):

 2

 47 3 * 7 = 21dec 8 divides into 21 2 times with a remainder
23 of 5. Notice the 5 and the carry of 2
 5

 1 2

 47 (3*4) + 2 = 14dec 8 divides into 14 1 time with a
23 remainder of 6

 165

 1

 47 2 * 7 = 14dec 8 divides into 14 1 time with a
23 remainder of 6

 165
 6

 11

 47 2*4 + 1 = 9dec 8 divides into 9 1 time with a
 23 remainder of 1
 165
 116 Now we are ready to add:

 1

 165
 116 .
 1345oct Notice in adding 6 + 6 we get 12. 8 divides 12 1

time, remainder 4.

Binary addition:

The rules to remember are:
 0 + 0 = 0 0 + 1 = 1 1 + 1 = 0 with a carry of 1

Add the two binary numbers 110011 and 100111.

1 1 1 1

 1 1 0 0 1 1
 1 0 0 1 1 1
1 0 1 1 0 1 0

The problem we have done here:
 110011bin + 100111bin = 1011010bin

is equivalent to:
 51dec + 39dec = 90dec

14-5

A trick for converting binary into hex:
 Begin with the binary number 10110111010. Starting on the right side, partition this into

groups of four bits and get 101 1011 1010 To each four bit group, assign a hex digit.
 5 B A

 Thus we have 10110111010bin = 5BAhex. Similarly, partition a binary number into groups

of 3 to convert to Octal.

See Appendix D for the decimal, hex, octal, and binary equivalents of 0 – 127.

For an enrichment activity concerning a Binary File Editor, see Appendix U. There, you will
have an opportunity to specify software, search on the Internet, and publish the information you
discover…. Appendix G explains how negative numbers are handled in the binary system.

Project… Basically Speaking
Create a project called TableOfBases with class Tester. The main method should have a for loop
that cycles through the integer values 65 <= j <= 90 (These are the ASCII codes for characters A
– Z). Use the methods learned in this lesson to produce a line of this table on each pass through
the loop. Display the equivalent of the decimal number in the various bases just learned (binary,
octal, and hex) as well as the character itself:

Decimal Binary Octal Hex Character
65 1000001 101 41 A
66 1000010 102 42 B
67 1000011 103 43 C
68 1000100 104 44 D
69 1000101 105 45 E
70 1000110 106 46 F
71 1000111 107 47 G
72 1001000 110 48 H
73 1001001 111 49 I
74 1001010 112 4a J
75 1001011 113 4b K
76 1001100 114 4c L
77 1001101 115 4d M
78 1001110 116 4e N
79 1001111 117 4f O
80 1010000 120 50 P
81 1010001 121 51 Q
82 1010010 122 52 R
83 1010011 123 53 S
84 1010100 124 54 T
85 1010101 125 55 U
86 1010110 126 56 V
87 1010111 127 57 W
88 1011000 130 58 X
89 1011001 131 59 Y
90 1011010 132 5a Z

14-6

Exercise on Lesson 14

1. Convert 3C4Fhex to decimal.

2. Convert 100011bin to decimal.

3. Convert 637oct to decimal.

4. Is the following code legal? If not, why?
int v = 04923;

5. Is the following code legal? If not, why?
int w = 0xAAFF;

6. Convert 9A4Ehex to decimal.

7. Convert 1011011bin to decimal.

8. Convert 6437oct to decimal.

9. Write code that will store 5C3Bhex in the integer variable a.

10. Write code that will store 3365oct in the integer variable k.

11. Convert 478dec to binary.

12. Convert 5678dec to hex.

13. Convert 5678dec to octal.

14. Multiply 2C6hex times 3Fhex and give the answer in hex.

15. Add 3456oct and 745oct and give the answer in octal.

16. What is the decimal equivalent of Ahex?

14-7

17. What is the decimal equivalent of 8hex?

18. What is the base of the hex system?

19. How do you write 16dec in hex?

20. What is the base of the binary system?

21. Add these two binary numbers:

1111000 and 1001110.

22. Add these two binary numbers:

 1000001 and 1100001

23. Explain the following “joke”.

“There are only 10 types of people in the world…those who understand binary
and those who don’t.”

24. Suppose you have String s that represents a number that you know is expressed in a base

given by int b. Write code that will convert this into an equivalent decimal based integer
and store the result in int i.

25. Show code that will convert 9322gf33 into String s that is the equivalent number in base
28.

26. Add 3FA6hex to E83Ahex and give the answer in hex.

27. Multiply 7267oct times 4645oct and give the answer in octal.

28. Add 2376oct to 567oct and give the answer in octal.

29. Multiply 3Ehex times 5Bhex and give the answer in hex.

15-1

Lesson 15…..Classes and Objects

A class is like a cookie cutter and the “cookies” it produces are the objects:
 One cookie cutter…………………..many possible cookies.
 One class………………………...…many possible objects.

Building a Circle class:

Let’s build a class and begin to understand its parts. Our class will be called Circle. When
we create one of our Circle objects (just like creating a cookie), we will want to specify
the radius of each circle. We will want to have the ability to interrogate the various Circle
objects we might have created and ask for the area, circumference, or diameter.

 public class Circle
 {
 //This part is called the constructor and lets us specify the radius of a
 //particular circle.
 public Circle(double r)
 {
 radius = r;
 }

 //This is a method. It performs some action (in this case it calculates the
 //area of the circle and returns it.
 public double area() //area method
 {
 double a = Math.PI * radius * radius;
 return a;

}

public double circumference() //circumference method
{
 double c = 2 * Math.PI * radius;
 return c;
}

 public double radius; //This is a State Variable…also called Instance
 //Field and Data Member. It is available to code

// in ALL the methods in this class.
 }

Instantiating an object:

Now, let’s use our cookie cutter (the Circle class) to create two cookies (Circle objects).
Place the following code in the main method of a different class (Tester).

 Circle cir1 = new Circle(5.1);
 Circle cir2 = new Circle(20.6);

With a cookie-cutter we say we create a cookie. With a class we instantiate an object.
So, we just instantiated an object called cir1 having a radius of 5.1 and another object

15-2
called cir2 having a radius of 20.6…. From this point on we don’t refer to Circle. Instead
we refer to cir1 and cir2.

Let’s suppose we wish to store the radius of cir1 in a variable called xx.
Here’s the code to do this:

 double xx = cir1.radius;

Now let’s ask for and printout the area of cir2:

 System.out.println (cir2.area());

A closer look at methods:

We will now look at the signature (also called a method declaration) of this area
method and then examine each part.

 public double area() //this is the signature

Access control (public, private, etc.):

The word public gives us access from outside the Circle class. Notice above
that we used cir2.area() and this code was in some other class…so “public”
lets us have access to the area() method from the outside world. It is also
possible to use the word private here. (more on this later)… Strictly speaking,
public and private are not officially part of the signature; however, since they
generally always preface the actual signature, we will consider them part of
the signature for the remainder of this book.

Returned data type (double, int, String, etc):

The word double above tells us what type variable is returned. When we issue
the statement System.out.println(cir2.area());, what do we expect to be
“returned” from the call to the area method? The answer is that we expect a
double precision number since the area calculation may very well yield a
decimal fraction result.

Method name:

The word area as part of the signature above is the name of the method and
could be any name you like…even your dog’s name. However, it is wise not
to use cute names. Rather, use names that are suggestive of the action this
method performs.

Naming convention:

Notice all our methods begin with a small letter. This is not a hard-and-fast
rule; however, it is conventional for variables and objects to begin with lower
case letters.

Parameters:

The parenthesis that follows the name of the method normally will contain
parameters. So far, in our circle class none of the methods have parameters so
the parenthesis are all empty; however, the parenthesis must still be there.

15-3
Let’s create a new method in which the parenthesis is not empty. Our new
method will be called setRadius. The purpose of this is so that after the object
has been created (at which time a radius is initially set), we can change our
mind and establish a new radius for this particular circle. The new signature
(and code) will be as follows:

 public void setRadius(double nr)
 {
 radius = nr; //set the state variable radius to the new radius

} //value, nr

 We see two new things here:
a. void means we are not returning a value from this method. Notice

there is no return in the code as with the other methods.

b. double nr means the method expects us to send it a double and that it
will be called nr within the code of this method. nr is called a
parameter.

Here is how we would call this method from within some other class:

 cir2.setRadius(40.1); //set the radius of cir2 to 40.1

40.1 is called an argument. The terms arguments and parameters are
often carelessly interchanged; however, the correct usage of both has
been presented here.

Notice that there is no equal sign in the above call to setRadius. This is
because it’s void (returns nothing)… therefore, we need not assign it to
anything.

Have you noticed another way we could change the radius?
 cir2.radius = 40.1; //We store directly into the public instance field.

Understanding main:

At this point we are capable of understanding three things that have remained mysterious
up to now. Consider the line of code that’s a part of all our programs:

 public static void main(String args[])

1. main is the name of this special method

2. public gives us access to this method from outside its class

3. void indicates that this method doesn’t return anything

The other parts will have to remain a mystery for now.

The constructor:
Next, we will look at the constructor for the Circle class.

15-4
public Circle(double r)

 {
 radius = r;
 }

The entire purpose of the constructor is to set values for some of the state variables of an
object at the time of its creation (construction). In our Circle class we set the value of the
state variable, radius, according to a double precision number that is passed to the
constructor as a parameter. The parameter is called r within the constructor method;
however, it could be given any legal variable name.

The constructor is itself a method; albeit a very special one with slightly different rules
from ordinary methods.

1. public is always specified.

2. The name of the constructor method is always the same as the name of the class.

3. This is actually a void method (since it doesn’t return anything); however, the
void specifier is omitted.

4. The required parenthesis may or may not have parameters. Our example above

does. Following is another example of a Circle constructor with no parameters. A
constructor with no parameters is called the default constructor.

public Circle()
{
 radius =100;
}

What this constructor does is to just blindly set the radii to 100 of all Circle
objects that it creates.

Project… What’s That Diameter?

Create a new method for the Circle class called diameter. Add this method to the Circle class
described on page 15-1. It should return a double that is the diameter of the circle. No parameters
are passed to this method.

In a Tester class, test the performance of your new diameter method as follows:
(Your project should have two classes, Tester and Circle.)

public class Tester
{
 public static void main(String args[])
 {
 Circle cir1 = new Circle(35.5);
 System.out.println(cir1.diameter()); // should give 71.0 as the answer.

}
}

15-5

Exercise on Lesson 15

1. double length = 44.0;
int width =13;
Rectangle myRect = new Rectangle(length, width);

a. Identify the class
b. Identify the object
c. What type of parameter(s) are passed to the constructor?

2. Write out the signature for the constructor of the Rectangle class from #1 above.

3. Suppose a constructor for the Lunch class is as follows:

public Lunch(boolean diet, int cal)
{
 diet_yes_no = diet;
 calories = cal;
}

Write appropriate code that will create a Lunch object called yummy5. You should
tell the constructor that, yes, you are on a diet, and the number of calories should
be 900.

4. BankAccount account39 = new BankAccount(500.43);

a. Identify the class
b. Identify the object
c. What type of parameter(s) are passed to the constructor?

5. A class is like a . An object is like a .

Fill in the blanks above using the word “cookie” and “cookie cutter”.

6. What’s wrong (if anything) with the following constructor for the School class?
public void school(int d, String m)
{ … some code … }

7. Which of the following is a correct association?
a. One class, many objects
b. One object, many classes

8. Which must exist first?
a. The class
b. The object

15-6
9. Is the following legal? If not, why?

//Constructor //This code is in main of Tester class
public House(int j, boolean k) int p = 3, q = 9;
{ …some code… } House myHouse = new House(p, q);

10. //Constructor

public Band(int numMembers, int numInstruments, String director, double amount)
{ …code…}

Band ourBnd = new Band(mem, instrmnts, “Mr. Perkins”, budget);
What should be the data types of:

a. mem
b. instrmnts
c. budget

**

public class BibleStory
{
 public int var1;
 public double var2;
 public String sss;

 public void Samson(double zorro)

{ …some code…}

public String getDelilah()
{ …some code…}

 public BibleStory(String x, int y, double z)
 { …some code… }
}

11. From the BibleStory class above, write the signature of the constructor.

12. From the BibleStory class above, what is/are the instance field(s).

13. From the BibleStory class above, write the signature(s) of the all the method(s).

14. Write code that instantiates an object called philistine from the BibleStory class. Pass

the following parameters to the constructor:
The integer should be 19, the String should be “Ralph”, and the double should be
24.18.

15. Assume an object called gravy has been created from the BibleStory class. Write code

that will set the state variable var2 to 106.9 for the gravy object.

15-7
16. Write code that will print the value of the BibleStory data member, sss. Assume you

have already created an object called bart.

17. Again, assume we have an object called bart instantiated from the BibleStory class.
What should you fill in for <#1> below in order that sss be stored in the variable jj?

<#1> jj = bart.sss;

18. Create a class called Trail. It should have instance fields x and y that are integers.

Instance field s should be a String. The constructor should receive a String which is
used to initialize s. The constructor should automatically set x and y both equal to 10.
There should be a method called met that returns a String that is the hex equivalent of
x* y. This method receives no parameters.

19. Suppose you wish to call a method whose signature is:

public double peachyDandy(int z)

Write code that would call this method (assume we have an object name zippo). Also
assume that this code will be placed in the main method of a Tester class and that the
peachyDandy method is in some other class.

20. Refer to the information in 19 above. What’s wrong with trying to call this method in

the following fashion?
double hamburger = zippo.peachyDandy(127.31);

.

15-8

Project … Overdrawn at the Bank

Create a class called BankAccount. It should have the following properties:

1. Two state variables:
double balance… This is how much money is currently in the account.
String name…The name of the person owning the account.

2. Constructor should accept two parameters.

a. One should be a double variable that is used to initialize the state variable,
balance.

b. The other should be a String that is used to initialize the state variable, name.

3. Two methods:

a. deposit…returns nothing…accepts a double that is the amount of money being
deposited. It is added to the balance to produce a new balance.

b. withdraw…returns nothing…accepts a double that is the amount of money

being taken out of the account. It is subtracted from the balance to produce a
new balance.

Create a Tester class that has a main() method. In that method you should input from the
keyboard the amount (1000) of money initially to be put into the account (via the constructor)
along with the name of the person to whom the account belongs.

1. Use these two pieces of data to create a new BankAccount object called myAccount.

2. Call the deposit method to deposit $505.22.

3. Print the balance state variable.

4. Call the withdraw method to withdraw $100.

5. Print the remaining balance in this form:

The Sally Jones account balance is, $1405.22

16-1
Lesson 16….. More on Classes and Objects

In this lesson we will explore some additional features of classes and objects.

private methods and state variables:

Consider the following class:

 public class Recipe
 {
 public Recipe(String theName)
 { …some code… }

 public void setServings(int x)
 { …some code… }

 public double getRetailCost()
 {
 …
 int x = 13;
 double tempCost = pricePerCalorie(x) * calories + cost;
 …
 }

 private double pricePerCalorie(int z)
 { …some code… }

 public int calories;
 public int carbs;
 public int fat;
 private double cost;

 public String name;
 }

We notice that there is a private method called pricePerCalorie and a private instance
field called cost (See Nug12-1 for more detail on public and private).

From within some other class, instantiate an object from this Recipe class.
 Recipe yummyStuff = new Recipe(“Watermelon Salad”);

The following code would be illegal from within the other class:
 double ff = yummyStuff.cost; //illegal! Cost is private
 double dj = yummyStuff. pricePerCalorie(3); //illegal! Method is private
 //Both would be legal if private is replaced with public.

Notice that from within the getRetailCost method that we can legally access the private
data member and the private method. Thus we learn that

 private things can only be accessed from within the class itself.

Declaring and instantiating an object:

Normally when we instantiate an object, we do it in one line of code:
Circle cir1 = new Circle(3.0);

16-2

However, it can be done in two lines:

 Circle cir1; //Here, cir1 is merely declared to be of type Circle
 cir1 = new Circle(3.0); //Here, it is finally instantiated.

Anonymous objects:

It is possible to instantiate an object without a name. Suppose that in the Ozzy class
(having an object named osborne) there is a method that we wish to call that has the
following signature:

public void melloJello(Circle cirA)

Notice that the parameter is of type Circle so in our calling code below, we dutifully pass
a Circle object to the melloJello method:
 osborne.melloJello(new Circle(5));

The code, new Circle(5), instantiates the object; however, in the region of the calling
code it doesn’t have a name. In the code of the melloJello method it does have a name,
cirA. In that code we can do such things as cirA.area() to find the area of the circle, etc.

Setting two objects equal:

Recall the Circle class from the previous lesson. Suppose we have instantiated a Circle
object called cir1…..

Circle cir1 = new Circle(5.3); //cir1 has a radius of 5.3

We will now demonstrate how to declare a cir2 object, but not to instantiate it. Then in
another line of code, set it equal to cir1:
 Circle cir2; //cir2 has only been declared to be of type Circle
 cir2 = cir1; //cir2 and cir1 now refer to the same object. There is only one object.
 //It simply has two references to it.

Thus, cir2.area() returns exactly the same as cir1.area()….and cir1.radius is
exactly the same as cir2.radius,…etc.

Determining if two objects are equal:

Look just above at cir1 and cir2. We have said these are equal objects (actually the same
object). Since they are equal, the following should print a true:

System.out.println(cir1 = = cir2); //true

However, if we recreate cir1 and cir2 in the following way and then compare them, they
will not be equal.
 Circle cir1 = new Circle(11);
 Circle cir2 = new Circle(11);
 System.out.println(cir1 = = cir2); //false, in spite of the fact they both have a
 //radius of 11
We see that various objects of the same class must refer to the same object in order to be
judged equal using = =. (Of course, we could also test with !=.)

Now suppose we change the code as follows:

Circle cir1 = new Circle(11);
Circle cir2 = new Circle(11);

16-3
System.out.println(cir1.equals(cir2));

What would be printed? This would behave exactly as the previous code, printing a false.
In other words, (cir1.equals(cir2)) is equivalent to (cir1 = = cir2). In a later lesson on
inheritance we would say that the Circle class inherits the equals method from the cosmic
superclass Object and simply compares to see if we are referring to the same object.
There is, however, an exception. If the programmer who created the Circle class created
an equals method for it, then that overrides the inherited method and compares the
contents of the two objects (likely the radii). In this case, the println above would print a
true since the contents of the two objects are the same (they both have a radius of 11).

With regard to the = = operator, String objects behave in exactly the same way as other
objects; however, they can sometimes appear to not follow the rule. Consider the
following:

 String s1 = “Hello”;

String s2 = “Hello”; //s1 and s2 are String constants
System.out.println(s1 = = s2); // prints true

The String constant pool:

Why did this print a true when s1 and s2 appear to be two separate objects? The reason is
that all String literals are stored as String constants in a separate memory area called the
String constant pool (as are all String literals at compile time). When object s1 is created,
“Hello” is placed in the String constant pool with the reference s1 pointing to it. Then,
for efficiency, when the reference (variable) s2 is created, Java checks the pool to see if
the String constant being specified for s2 is already there. Since it is in this case, s2 also
points to “Hello” stored in the String constant pool. Physically, s1 and s2 are two
separate String object references, but logically they are pointing to the same object in the
String constant pool. So, in (s1 = = s2) from the code above we see that both s1 and s2
are referencing the same object, and a true is returned.

Now consider Strings built in the following way and their reaction to the = = operator:

String s1 = new String(“Felix”);
String s2 = new String(“Felix”); // s1 and s2 are not String constants
System.out.println(s1 = = s2); // prints false

This code behaves exactly as expected since the two String objects, s1 and s2, really are
two separate objects referenced in an area of memory apart from the String constant pool
(as dictated by new).

While we are on the subject of String storage let’s see what happens with the following:

 String s = new String(“my string”);

This actually results in the creation of two String objects. The reference s points to the
newly created String object in “regular” memory. The String literal “my string” is
encountered at compile time and is placed as a String constant in the String constant pool.

 The moral of all this confusion is that if you want to compare the contents of
Strings, use either the equals or the compareTo method, not the = = operator.

16-4

Reassignment of an object:

The name of an object is simply a reference to the actual object and can be easily made to
point to a different object.

Plant species = new Plant(“ragweed”);
System.out.println(species.status());
species = new Plant(“redwood”); //species is set equal to the new Plant object
species.endangered = false;

The reassignment above is exactly analogous to the following in which the integer x is
assigned a new value.
 int x = 3;
 . . .
 x = 5;

Default rule of public/private:
Suppose in a class we have the following method and data member:

 public double method1()
 { … some code … }

public int var1;

What would these mean if the word public was left off of each? By default they would
be Package (see Nug12-1) which for most student applications will behave like public.

Initializing state variables at the time of declaration:

Look back at the Recipe class on the first page of this lesson. There, you will find the
following declaration for the state variable cost.

private double cost; //numeric state variables are automatically initialized to 0.

Notice that cost is only declared, not initialized. Typically, initialization is done in the
constructor; however, it can be done at the time of declaration as follows:

private double cost = 3;

Notice that a numeric state variable can be declared, but not initialized as follows:

 public int idNum;

In this case idNum is automatically initialized to 0.

The rules are different for initialization of a numeric variable in the body of a method.
Assume that amount in the code below is in the body of a method. It is not automatically
initialized to 0. In fact, trying to use it without initializing will result in a compile error.

 double amount;

16-5

A final word about constructors:

When calling a constructor, for example, with

ClassA obj = new ClassA(“Yes”, 3); ,

the parameters (a String and int type for this example) must match exactly with one of the
constructors in the class. An exception to this is when calling the default constructor

ClassA obj = new ClassA(); ,

 it is permissible to have no constructors in the class. However, if the other constructors
are present, the default constructor must be present if called.

Exercise for Lesson 16

Problems 1 – 5 refer to the following code (assume that equals is not an explicit, method of
this class):

MoonRock myRock = new MoonRock(3, “Xeon”);
MoonRock yourRock = new MoonRock(2, “Kryptonite”);
MoonRock ourRock = new MoonRock(3, “Xeon”);
MoonRock theRock;
theRock = ourRock;

1. Does theRock.equals(ourRock) return a true or false?

2. Does theRock.equals(yourRock) return a true or false?

3. Does theRock.equals(myRock) return a true or false?

4. Does myRock = = ourRock return a true or false?

5. Does myRock.equals(yourRock) return a true or false?

Problems 6 – 11 refer to the following code:

 public class Weenie
 {
 public Weenie()
 { . . . }

 public String method1(int jj)
 { . . . }

 private void method2(String b)
 { . . . }

 public int method3()

 { . . . }

16-6

 public double x;
 public int y;
 private String z;

 }

Now suppose from within a different class we instantiate a Weenie object, oscarMayer.
All of the code in questions 6 – 11 is assumed to be in this other class.

6. Is int zz = oscarMayer.method1(4); legal? If not, why?

7. Is oscarMayer.method2(“Hello”); legal? If not, why?

8. Is int cv = oscarMayer.method3(); legal? If not, why?

9. Is int cv = oscarMayer.method3(14); legal? If not, why?

10. Is oscarMayer.z = “hotdog”; legal? If not, why?

11. Assume the following code is inside method1:

method2(“BarBQ”);
 Is this legal? If not, why?

12. Instantiate an object called surferDude from the Surfer class using two separate lines of
code. One line should declare the object and the other line should instantiate it. (Assume
no parameters are sent to the constructor.)

13. Which of the following is correct? (Assume beco is an object having a method

(method33) that receives a Circle parameter.)
a. Circle cir5 = new Circle(10);

beco.method33(cir5);
b. beco.method33(new Circle(10)) ;
c. Both a and b

14. What is the value of balance after the following transactions?

//Refer to the BankAccount class you created on p 15-8
BankAccount acc = new BankAccount(10, “Sally”);
acc.deposit(5000);
acc.withdraw(acc.balance / 2);

15. What’s wrong with the following code?

BankAccount b;
b.deposit(1000);

16. What’s wrong with the following code?

BankAccount b new BankAccount(32.75, “Melvin”);
b = new BankAccount(1000, “Bob”);
b.deposit(“A thousand dollars”);

16-7

17. What is printed in the following?
String myString = “Yellow”;
String yourString = “Yellow”;
String hisString = new String(“Yellow”);
String ourString = myString;
System.out.println(myString = = yourString);
System.out.println(myString = = ourString);
System.out.println(myString.equals(yourString));
System.out.println(myString.equals(ourString));
System.out.println(myString = = hisString);

Project… Gas Mileage

Create a class called Automobile in which you pass a gas mileage (miles per gallon)
parameter to the constructor which in turn passes it to the state variable, mpg. The
constructor should also set the state variable gallons (gas in the tank) to 0. A method called
fillUp adds gas to the tank. Another method, takeTrip, removes gas from the tank as the
result of driving a specified number of miles. Finally, the method reportFuel returns how
much gas is left in the car.

Test your Automobile class by creating a Tester class as follows:

 public class Tester
 {
 public static void main(String args[])
 {

//Create a new object called myBmw. Pass the constructor an
//argument of 24 miles per gallon

 Automobile myBmw = new Automobile(24);

//Use the myBmw object to call the fillup method. Pass it an argument
//of 20 gallons.
myBmw.fillUp(20);

//Use the myBmw object to call the takeTrip method. Pass it an
//argument of 100 miles. Driving 100 miles of course uses fuel and we
//would now find less fuel in the tank.
myBmw.takeTrip(100);

//Use the myBmw object to call the reportFuel method. It returns a
//double value of the amount of gas left in the tank and this is assigned
// to the variable fuel_left
double fuel_left = myBmw.reportFuel();

//Print the fuel_left variable
System.out.println(fuel_left); //prints gallons left, 15.833333333333332

 }
 }

16-8

Classes and Objects… Contest Type Problems

1. What should replace <#1> in order that the instance
field, name, be initialized when a new object is
created?

A. String name = nm;
B. name = nm;
C. nm name;
D. Can’t be done because name is private
E. None of these

2. Assuming <#1> is filled in correctly, how would
you create a Student object called stu1 and set name to
“Sally”?

A. Student stu1 = new Student();
name = “Sally”;

B. stu1.name = “Sally”;
C. stu1 = new Student(“Sally”);
D. Student stu1 = new Student(“Sally”);
E. None of these

3. Assume a Student object called myStd has been
created and grades have been assigned. How would
you retrieve this student’s average and store the result
in the integer variable sa?

A. sa = myStd.getAverage();
B. sa = (int)(myStd.sum/myStd.numGrades);
C. sa = (int)myStd.getAverage();
D. Both B and C
E. None of these

4. Which of the following would print the name of the
student represented by the object called sObj?

A. System.out.println(sObj.getName());
B. System.out.println(sObj.name());
C. Both A and B
D. System.out.println(sObj(name));
E. None of these

5. Which state variable is accessible from outside the
Student class?

A. numGrades
B. name
C. sum
D. Both name and sum
E. All are accessible

public class Student
{
 public Student(String nm) {
 <#1>
 }

 public String getName()
 {
 return name;
 }

 public void setGrade(int grd)
 {
 numGrades++;
 sum = sum + grd;
 }

 public double getAverage()
 {
 return sum/numGrades;
 }

 private String name;
 private double sum=0;
 public int numGrades=0;
}

17-1

Lesson 17…..Advanced String Methods

Following is a list of some of the String methods and techniques we encountered in Lesson 3:

Concatenation, length(), substring(), toLowerCase(), toUpperCase(), and escape
sequences.

In Lesson 9 we studied how to compare Strings:
 equals() and equalsIgnoreCase()

We will now look at some of the signatures (and examples) of some of the more advanced
String methods. Recall from Lesson 15 that the layout of a signature is as follows:
 public returnType methodName(type parameter1, type parameter2, …)

The variable returnType and type could be double, int, boolean, String, char, etc.

 For the examples below assume that s is a String as follows:
 s = “The Dukes of Hazzard”

For convenience, the indices of the individual characters of this String are given below:
 T h e D u k e s o f H a z z a r d
 | | | | | | | | | | | | | | | | | | | |
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

public int compareTo(Object myObj)

Notice this method accepts any Object. Here, we will specifically use a String object.
The general syntax for usage of compareTo is: int j = s.compareTo(“coat room”);

This method has three rules:
a. If s alphabetically precedes “coat room” then it returns a negative int.
b. If s alphabetically comes after “coat room” it returns a positive int.
c. If s is alphabetically equal to “coat room” then it returns zero.

System.out.println(s.compareTo(“coat room”)); //prints a negative number

The reason we get a negative number in the example above is because ‘T’ alphabetically
precedes ‘c’. Refer back to Lesson 13 and you will see that the ASCII code for capital ‘T’
is 84 and the ASCII code for little ‘c’ is 99. The number 84 comes before 99 so we say
that “The Dukes of Hazzard” comes before (or alphabetically precedes) “coat room”.

There is another version of compareTo, compareToIgnoreCase, that is not case sensitive.

indexOf()
This method comes in 6 flavors: (All return –1 if the search is unsuccessful.)

a. public int indexOf(String str)

Search from left to right for the first occurrence of the String str.

int j = s.indexOf(“Hazzard”);
System.out.println(j); //13

17-2

b. public int indexOf(String s, int from)

Starting at index from, search from left to right for the first occurrence of the
String s.

int j = s.indexOf(“Hazzard”, 15);
System.out.println(j); //-1…it couldn’t find it when starting at 15

int j = s.indexOf(“e”, 4);
System.out.println(j); //7. First “e” is at 2, but we started searching at 4

c. public int indexOf(char ch)

Search from left to right for the first occurrence of the char ch.

int j = s.indexOf(‘D’);
System.out.println(j); //4

d. public int indexOf(int ascii)

This method is very similar to c. above, except, instead of a character we give
the ASCII code of the character desired.

int j = s.indexOf(68); // ASCII code for ‘D’ is 68
System.out.println(j); //4

e. public int indexOf(char ch, int from)

Starting at index from, search from left to right for the first occurrence of the
char ch.

int j = s.indexOf(‘e’, 4);
System.out.println(j); //7

f. public int indexOf(int ascii, int from)

This method is very similar to e. above, except, instead of a character we give
the ASCII code of the character desired.

int j = s.indexOf(101, 4); // ASCII code for ‘e’ is 101
System.out.println(j); //7

lastIndexOf()

This method also comes in 6 flavors: (All return –1 if the search is unsuccessful.)

These are exactly the same as the indexOf() method, except here, we begin searching
from the right side of the String instead of the left as with indexOf(). Only two
examples will be given since they are so similar to the previous examples.

a. public int lastIndexOf(String str)

17-3
int j = s.lastIndexOf(“Haz”);
System.out.println(j); //13

b. public int lastIndexOf(String s, int from)

int j = s.lastIndexOf(“Haz”, 11);
System.out.println(j); // -1…can’t find since we start at 11.

c. public int lastIndexOf(char ch)
d. public int lastIndexOf(int ascii)
e. public int lastIndexOf(char ch, int from)
f. public int lastIndexOf(int ascii, int from)

public char charAt(int indx)

This method returns the character at the specified index.

char myChar = s.charAt(6);
System.out.println(myChar); //k

public String replace(char old, char new)

This method replaces all occurrences of the character old with the character new.

String myString = s.replace(‘z’, ‘L’);
System.out.println(myString); // The Dukes of HaLLard

public String replace(String old, String new)

This method replaces all occurrences of String old with String new.

String myString = s.replace(“Dukes”, “Nerds”);
System.out.println(myString); // The Nerds of Hazzard

public String trim()

This method removes whitespace from both ends of the String while leaving interior
whitespace intact. (Whitespace consists of \n, tab (\t), and spaces.)

String s = “\t Ding Dong \t \n ” ;
System.out.println(“X” + s.trim() + “X”); // XDing DongX

public boolean contains(String ss)

This method returns true when this String contains the String ss; otherwise, false.

boolean b = “Sticks and Stones”.contains(“tic”); //returns true

public boolean startsWith(String ss)

This methods returns true when this String contains ss as its leading substring.

boolean b = “Have a good day.”.startsWith(“Hav”); //returns true

Parsing Strings with Scanner
In Lesson 7 we learned how to use the Scanner class to input text from the keyboard. Here, we
illustrate further uses of Scanner in parsing a String. Instead of passing System.in to the Scanner
constructor as we did for keyboard input, we pass a String to the constructor as follows:

17-4
Scanner sc = new Scanner(“Please, no more homework!”);

Delimiters:
A delimiter is a series of characters that separates the text presented to a Scanner object
into separate tokens. The default delimiter is whitespace, so the separate tokens produced
by repeated application of the next method in the above example would be “Please,”,
“no”, “more”, and “homework!”. The useDelimiter method allows a custom delimiter to
be set using regular expressions (see Appendix AC).

Position:

One of the key concepts here is that of the “position” of the Scanner object as it scans its
way through the String. We will always think of this position as being between two
characters in the same way that a cursor in a word processor is never on a character;
rather it is always between two characters (or perhaps preceding the first character, or
just after the last character). As tokens are returned by next, etc., the position advances to
just after the last token returned.

Let us consider the following sequence of code where a String is passed to the
constructor of the Scanner class as we illustrate the concept of position. We are also
going to introduce the findInLine, useDelimiter, hasNext(String regex), and skip methods
(all use regular expression arguments… see Appendix AC). These methods will not be
formally defined; rather, their functions will be inferred from these examples:

Code Position after code execution
Scanner sc = new Scanner("A string for testing scanner");
//The default delimiter of whitespace will be used.

 A s t r i n g f o r t e s t i n g s c a n n e r
|

System.out.println(sc.next());
//Prints A

 A s t r i n g f o r t e s t i n g s c a n n e r
 |

System.out.println(sc.findInLine("ri"));
//Prints ri and advances the position

A s t r i n g f o r t e s t i n g s c a n n e r
 |

String ns = sc.next(); //next() returns a String
System.out.println(ns);
//Prints ng

A s t r i n g f o r t e s t i n g s c a n n e r
 |

sc.useDelimiter("r\\s+");
//New delim is r followed by 1 or more whitespace chr

A s t r i n g f o r t e s t i n g s c a n n e r
 |

System.out.println(sc.next());
//Prints fo (there is a leading blank before f)

A s t r i n g f o r t e s t i n g s c a n n e r
 |

sc.skip(“r\\s*test”);
//Advances the position by skipping over “r test”
//\\s* stands for zero or more white space characters

A s t r i n g f o r t e s t i n g s c a n n e r
 |

System.out.println(sc.next());
//Prints ing scanner

A s t r i n g f o r t e s t i n g s c a n n e r
 |

We should take note of several salient features from this example:

1. The position of a Scanner object always moves forward. It can never be “backed-
up”. Likewise, searches (as with findInLine and skip) always move forward from the
current position.

2. Starting from the current position and moving forward, the findInLine method

searches ahead as far as necessary to find the specified substring. Notice above that
the “ri” sought after does not have to immediately follow the current position.

If the substring is not found, a null is returned.

17-5

3. In the skip method the specified substring does indeed need to immediately follow
the current position. The “r test” sought after needs to immediately follow the current
position.

If the substring is not found, a NoSuchElementException is thrown (an error).

In addition to the searching methods findInLine and skip, there is another that can sometimes
be useful, findWithinHorizon(String regex, int horizon). This is identical to findInLine except
for the additional parameter, horizon, which limits the search for regex to the next horizon
characters. If the search is to be successful, regex must be found in its entirety within
horizon characters. If horizon is zero the search is allowed to continue to the end of the text if
necessary.

A quirk:

Let’s consider what happens when there are two delimiters immediately adjacent to
each other as illustrated by the following code:

String ss = "abcxyxydef";
Scanner sc = new Scanner(ss);
sc.useDelimiter("xy");
while(sc.hasNext())
{
 System.out.println(sc.next());
}

The resulting printout is:

abc

def

The blank line is an empty String that was “between” the two successive delimiters.

Detecting Spam Email:

In order to refine our understanding of the useDelimiter, skip and hasNext(String regex)
methods, consider how an email-spammer might try to disguise a word for the purpose of
getting past a spam filter. Instead of transmitting something like “Low cost loans”, the
trick is to send a similar phrase with intervening characters like, “L*o*w* *c*o*s*t*
l*o*a*n*s”. Notice this is still readable; however, a standard spam filter would be
defeated.

In the first line of code below we see an attempt at disguising the word “dirty”.
The remainder of the code strips away the superfluous characters leaving only the
original word so that the spam filter can properly detect it.

 String s = "d^^*_^^ir....-t***y"; //"dirty"

 Scanner sc = new Scanner(s);
 sc.useDelimiter(""); //set delimiter to nothing which makes every character a token

 String answer = "";

17-6
 while(sc.hasNext())
 {

 //skip the stuff we want to get rid of
 while(sc.hasNext("\\W|_"))

 {
 sc.skip("_*"); //skip underscores
 if(sc.hasNext())
 sc.skip("\\W*"); //skip non-word characters.Word characters are[a

 //zA-Z_0-9]
 }

 if(sc.hasNext())
 answer = answer + sc.next();

 }
 System.out.println(answer); //prints dirty

In Lesson 7 we learned to input text from the keyboard by creating a Scanner object by passing
System.in to the constructor. There, we directly used this same Scanner object to parse the input
with next, nextInt, etc. To avoid some strange effects, it is suggested that all the input be
immediately stored into a String using nextLine and then passed to a new Scanner object. Then
parse this second Scanner object using next, nextInt, findInLine, etc.

Project… Add ‘em Up
Consider the following program that allows something like 8 + 33 + 1,345 +137 to be entered as
String input from the keyboard. A Scanner object then uses the plus signs (and any adjoining
whitespace) as delimiters and produces the sum of these numbers(1523).

import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])
 {

 Scanner kb = new Scanner(System.in);

 System.out.print("Enter something like 8 + 33 + 1,345 +137 : ");
 String s = kb.nextLine(); //Best to store in a String and then create a new Scanner
 //object; otherwise, it can get stuck waiting for input.
 Scanner sc = new Scanner(s);
 //Set delimiters to a plus sign surrounded by any amount of white space...or...
 // a minus sign surrounded by any amount of white space.
 sc.useDelimiter("\\s*\\+\\s*");

 int sum = 0;
 while(sc.hasNextInt())
 {
 sum = sum + sc.nextInt();
 }
 System.out.println("Sum is: " + sum);

 }
}

17-7

The output will typically look like this:

Enter something like 8 + 33 + 1,345 +137 : 8 + 33 + 1,345 + 137
Sum is: 1523

Now modify this program so as to allow either plus or minus signs. Don’t forget to allow for a
leading plus or minus sign on the first number in the sequence. If the leading number has no sign,
assume the number is positive. Your output should typically appear as follows:

Enter something like 8 + 33 + 1,345 -137 : 8 + 33+ 1,345 -137
Sum is: 1249

Exercise on Lesson 17

Use the following code for problems 1 – 15. In each problem state what’s printed.
 String s = “Lucky hockey puck”;
 String m = “uck”;

int j = 6, z = 99;

1. int k = s.indexOf(m);
System.out.println(k);

2. int k = s.indexOf(“uck”, j);
System.out.println(k);

3. int k = s.indexOf(‘c’);
System.out.println(k);

4. String str = s.replace(‘o’, ‘p’);
System.out.println(str);

5. int k = s.lastIndexOf(m, j + 3);
System.out.println(k);

6. char p = s.charAt(7);
System.out.println(p);

7. int k = s.indexOf(z);

System.out.println(k);

8. int k = s.lastIndexOf(m);
System.out.println(k);

17-8

9. int k = s.indexOf(‘y’, j);
System.out.println(k);

10. char p = s.charAt(z - 90);
System.out.println(p);

11. int k = s.indexOf(m,15);
System.out.println(k);

12. int k = s.indexOf(z + 2, 4);

System.out.println(k);

13. int k = s.lastIndexOf(‘h’);
System.out.println(k);

14. int k = s.lastIndexOf(121);
System.out.println(k);

15. String str = s.replace(‘y’, ‘A’);
System.out.println(str);

The following code applies to problems 16 – 22. In each problem, state what’s printed.
 String xyz = “bathtub”;
 String ddd = “BathTUB”;
 String ccc = xyz;
 String wc = “Whooping crane”;
 String s = “ \t\tGu daay, mates \n”;

16. int j = xyz.compareTo(wc);
boolean bb;
if (j > 0)
{
 bb = true;
}
else
{
 bb = false;
}
System.out.println(bb);

17-9

17. String v = ddd.toLowerCase();
int fg = ccc.compareTo(v);
System.out.println(fg + 1);

18. System.out.println(ddd.compareTo(ccc));

19. System.out.println(xyz.compareTo(ccc));

20. System.out.println(“Stupid”.compareTo(ddd));

21. System.out.println(“>>>” + s.trim() + “<<<”);

For the remaining problems assume the following code has already executed:

String m = “Good morning, how may I help you? I289 56”;
Scanner sc = new Scanner(m);

Additionally assume for each problem that the code in all of the preceding problems (starting
with problem 22) has run and state what is printed. If an exception (error) is generated, state
what causes it.

22. System.out.println(sc.next());

23. sc.skip(“\\s*mo”);
String s = sc.next();
System.out.println(s);

24. sc.useDelimiter(“\\s+I”);

System.out.println(sc.next());

25. sc.findInLine(“el”);

System.out.println(sc.hasNext());
 System.out.println(sc.next());

26. sc.useDelimiter(“\\s+”);
System.out.println(sc.nextInt());

17-10

Project… Encryption/Decryption

You have just been hired by the CIA as a programmer in the encryption department. Your job is
to write a class called Crypto. One method, encrypt, will accept a String that represents the
sentence to be encrypted. It will return a String that is the sentence with all v’s (big or small)
replaced with “ag’,r”, all m’s (big or small) with “ssad”, all g’s (big or small) with “jeb..w”, and
all b’s (big or small) with “dug>?/”.

The class contains another method, decrypt, that accepts a String that represents the sentence to
be decrypted. In this method the reverse process described above is performed. It returns a String
that is the original sentence before encryption.

Use the following Tester class to insure that your methods work.

import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])
 {
 Scanner kbReader = new Scanner(System.in);
 System.out.print(“Enter a sentence that is to be encrypted: ”);
 String sntnc = kbReader.nextLine();
 System.out.println(“Original sentence = ” + sntnc);

 Crypto myCryptObj = new Crypto();
 String encryptdSntnc = myCryptObj.encrypt(sntnc);
 System.out.println(“Encrypted sentence = ” + encryptdSntnc);

 String decryptdSntnc = myCryptObj.decrypt(encryptdSntnc);
 System.out.println(“Decrypted sentence = ” + decryptdSntnc);
 }
}

Test with this sentence: “This is a very big morning.”

After running your program, your screen should appear as follows:

Enter a sentence that is to be encrypted: This is a very big morning.
Original sentence = This is a very big morning.
Encrypted sentence = This is a ag',rery dug>?/ijeb..w ssadorninjeb..w.
Decrypted sentence = This is a very big morning.

17-11
Advanced String Methods… Contest Type Problems

1. What is returned by doStuff(“I would if I
could”)?

A. 1
B. 2
C. 3
D. 4
E. None of these

2. What is returned by doStuff(“fee fi fo fum”)?

A. 1
B. 2
C. 3
D. 4
E. None of these

public class MyTester
{
 public static int doStuff(String myString)
 {
 int cc = 0;
 int p = myString.length()/2;
 for (int k=0; k<myString.length()/2; k++, p++)
 if(myString.charAt(k) == myString.charAt(p))
 cc++;
 return cc;
 }
}

3. What is output with the method call,
convert(“Abe Lincoln”)?

A. ABELINCOLN
B. ABE LINCOLN
C. aBE lINCOLN
D. abe lincoln
E. None of these

4. What is output with the method call,
convert(“BR549”)?

A. Throws an exception
B. Nothing
C. BR549
D. Br549
E. None of these

public class MyTester
{
 public static void convert(String myString)
 {
 String tot = "";
 for(int j=0; j<myString.length(); j++)
 {
 char ch =
 Character.toUpperCase(myString.charAt(j));
 tot = tot + ch;
 }
 System.out.println(tot);
 }
}

5. What is output with the method call,
bailOnM(“mumify”)?

A. 0
B. 1
C. 2
D. 6
E. None of these

public class MyTester
{
 public static int bailOnM(String myString)
 {
 int indx = 0;
 do {
 indx++;
 }while(myString.charAt(indx)!='m');
 return indx;
 }
}

6. What is output?

A. A blank
B. t
C. e
D. Won’t compile
E. None of these

public class MyTester
{
 public static void main(String args[]) {
 System.out.println("Nertz to you".charAt(4));
 }
}

17-12

7. What is output with the method call,
printStuff(“A1 USDA prime.”)?

A. AUSDAprime
B. A USDA prime.
C. 1
D. A USDA PRIME.
E. None of these

public class MyTester
{
 public static void printStuff(String theString)
 {
 for(int j=0; j<theString.length(); j++) {
 char chr = theString.charAt(j);
 if(Character.isLetter(chr))
 System.out.print(chr);
 }
 }
}

8. What is output with the method call,
elim(“ABC1234DEF”)?

A. Throws exception
B. 0
C. 18.0
D. 306.0
E. None of these

public class MyTester
{
 public static double elim(String theString)
 {
 int sum = 0;
 for(int j=0; j<theString.length(); j++) {
 if(theString.charAt(j) > '1' &&
 theString.charAt(j) < '8')
 sum = sum + theString.charAt(j) * 2;
 }
 return sum;
 }
}

9. What is output by System.out.println(“Alf Abrams”.indexOf(‘A’)); ?

A. 0
B. 1
C. 4
D. 65
E. None of these

10. What is output by System.out.println(“Alf Abrams”.lastIndexOf(‘A’)); ?

A. 0
B. 1
C. 4
D. 65
E. None of these

11. What is output with the method call,
doStuff(“3872345619”)?

A. 42345>>>0
B. 43456>>>1
C. 42345>>>1
D. 4345619>>>1
E. None of these

public static void doStuff(String aString)
{
 int p=1;
 int j = aString.indexOf("23") + p;
 String s;
 System.out.print(j);
 if(j>=0)
 s = aString.substring(j, j+4);
 else
 s = "No can do";
 System.out.println(s + ">>>" + j%3);
}

18-1

Lesson 18…..Arrays

Let’s suppose we need to keep grades for 400 students. Here is one way to do it:

 int grade1 = 97, grade2 = 62, grade3 = 85, … grade400 = 76;

Clearly this is a tedious process for a large number of variables. Is there a better way? Yes, we
should use array variables in this application.

Implementing our 400 variables as an array, we will use an identical name for all 400 variables.
So how will we be able to tell them apart? We will use indices as follows (indices are sometimes
called subscripts; in fact, array variables are sometimes called subscripted variables).

grade[1] = 97; grade[2] = 62; grade[3] = 85; . . . grade[400];

Actually, this is not quite the way we do it. In reality, the indices always start at 0, so the
variables would really look like this:

grade[0] = 97; grade[1] = 62; grade[2] = 85; . . . grade[399];

Notice that even though we have 400 different variables in our array, the last index is 399. It is
very important to be aware of this little quirk.

Three ways to declare and initialize an array:

Above we looked at how to initialize the various elements of an array. Let’s look now at
how to declare the array …and in fact, the entire process. We will present 3 different
approaches:

Before we begin to show the various approaches, let’s look first at the syntax of declaring
an int array called a:

 int []a = ….; //The square brackets indicate that a is to be an array. This is the
 //syntax used in most books and in contests.

 int a[] =. . . ; //This is a more natural way to accomplish the same thing. This is
 // the method we will use.

The first way:
int a[] = new int[400];
a[0] = 97;
a[1] = 62;
a[2] = 85;
. . .

The second way:
int a[] = {97, 62, 85, . . .}; //This is the most popular way

The third way:

int a[] = new int[] {97, 62, 85, . . .};

While the above examples are for an int array, arrays for double, String, char, and
boolean types are also possible. They are done in exactly the same way. We can even
make arrays of objects although their initialization is slightly different. (That will be
discussed later.)

18-2
We will now look at some examples of array usage, each of which will illustrate a particular
feature.

Finding the length of an array:

a.length will tell us how many elements the array a has.
double a[] = new double[7];
int lngt = a.length; //notice no parenthesis after length (it’s a state variable)
System.out.println(lngt); //7

Declaring and initializing on different lines:

In this example we illustrate that it’s possible to declare an array on one line and then to
initialize its elements on a different line. Also, in a for loop we will take special note of
the technique for cycling through all the elements of the array.

int sq[] = new int[1000]; //array is only declared here…indices 0 - 999
for (int j = 0; j < sq.length; j++)
{
 sq[j] = j * j; //stores the square of each index in the element
}

Notice that in the code fragment int j = 0; j < a.length that j will assume values
of 0 through 999. This makes a total of 1000 (0 – 999) different indices…and 1000
times through the loop.

Now let’s try to write this same code in the old fashioned way (without using
arrays):

 sq0 = 0 * 0;
 sq1 = 1 * 1;
 sq2 = 2 * 2;
 . . .
 sq999 = 999 * 999;

This is clearly impractical and we begin to see the value of arrays.

Parallel arrays:

Consider the String array, name, and the related “parallel” int array, grade. We will cycle
through a loop, inputting students’ names and corresponding grades.

int numStudents = 25; //this illustrates that we can use a variable to
 //determine the length of our array
String name[] = new String[numStudents];
int grade[] = new int[numStudents];

for(int j = 0; j < numStudents; j++) {
 Scanner kbReader1 = new Scanner(System.in);
 System.out.print(“Enter the student name: ”);
 name[j] = kbReader1.nextLine(); //input from keyboard
 Scanner kbReader2 = new Scanner(System.in);
 System.out.print(“Enter the grade: ”);
 grade[j] = kbReader2.nextInt();
}

Because they are “associated”, the name and grade arrays are called parallel arrays.

18-3
Arrays in calculations:

We can use numeric array variables in calculations as follows:
average = (slg[0] + slg[1] + slg[2]) / 3;

 This code computes the average of the first 3 elements of the slg array.

Warning:

Don’t produce an ArrayIndexOutOfBoundsException (an error) with improper
subscripts:

double zorro[] = new double[15];
zorro[14] = 37;
zorro[15] = 105; //Illegal! Index 14 is the largest possible.
zorro[0] = 209;
zorro[-1] = 277; //Illegal! Index 0 is the smallest possible.

Passing an array to a method:

Suppose we have the following code:
 char ch[] = new char[50]; //Yes, we can have character arrays
 . . .
 ch[4] = ‘g’;
 . . .
 double e = 2.718;
 method1(e, ch); //call method1 (see code below) in some other class and
 //pass our double variable and the array, ch
 System.out.println(ch[4]); //V…notice it’s not ‘g’ anymore
 System.out.println(e); //2.718…unchanged

 public void method1(double xxx, char myArray[])
 {
 xxx = 0;
 myArray[4] = ‘V’;
 }

Notice that within method1 that e was passed, but locally renamed to xxx.
Similarly, the ch array was renamed there to myArray.

a. Notice that changing xxx in method1 does not affect the e value back in
the calling code.

b. Notice that changing myArray[4] in method1 does change ch[4] back in

the calling code.

Automatic initialization of arrays:
With numeric arrays (both double and int), all elements are automatically initialized to 0.

int xyz[] = new int[2000];
System.out.println(xyz[389]); //0

The elements of a String array (and other object arrays) are not automatically initialized
and will result in a NullPointerException when trying to reference an element that has not
been specifically initialized.

18-4
Using the split method to produce an array:

The split method parses the original String into the separate elements of a returned String
array using the rules of “regular expressions” (see Appendix AC) to determine the
parsing delimiters.

The signature for the split method is:

public String[] split(String regex)

The following examples assume that test String s has been created and that the String
sp array have already been declared:

String s = “Hello again”, sp[];

Example:
sp = s.split(“a”); //sp[0] = “Hello ”, sp[1] = “g” , sp[2] = “in”

Example:
sp = s.split(“\\s”); // “\\s” means white space, sp[0] = “Hello”, sp[1] = “again”

 // \\s+ means one or more white space characters, so the same
 //split would result from “Hello again”

Example:
sp = s.split(“ga”); // sp[0] = “Hello a”, sp[1] = “in”

Example:
sp = s.split(“m”); // sp[0] = “Hello again”

Example:
sp = s.split(“e|g”); // “e|g” means either ‘e’ or ‘g’, sp[0] = “H”, sp[1] = “llo a”,
 // sp[2] = “ain”
Example:
sp = s.split(“a|g”); // “a|g” means a or g (same as [ag]), sp[0] = “Hello ”, sp[1] =

//“” sp[2] = “”, sp[3] = “in”, (notice the elements of zero
// length)

Example:
sp = s.split(“el|ai”); // “|” means OR, sp[0] = “H”, sp[1] = “lo ag”, sp[2] = “n”

The split method can be used to count the number of occurrences of a specified
regular expression within a String. For example, consider the following String:
 String s = “IF THE BOX IS RED IT’S THE RIGHT ONE.”

In order to count the occurrences of “THE”, use it as the regular expression with the
split method (String sp[] = s.split(“THE”)). The underlined portions below show
the three different elements of the array into which our array is “split.”
 “IF THE BOX IS RED IT’S THE RIGHT ONE.”

The number of elements in the array is three (sp.length); therefore, the number of
occurrences of “THE” is sp.length – 1. A complication occurs if the delimiter trails
the String as in the following example:
 “ENOUGH USE OF THE WORD THE”

sp.length –1 yields the wrong answer (1). See the “Count ’em Right” project for how
to properly handle this anomaly of the split method.

18-5

Project… Count ’em Right
At the bottom of page 18-4 we were left with the dilemma of how to use the split method to
count multiple occurrences of a regular expression when that expression is at the end of the
String to be searched. It is also interesting to see what happens when there is a delimiter at the
beginning of the String. Following is an example of the anomalies caused by having a delimiter
at either the beginning or end of the String:

String s = “cHello good cbuddyc”;
int sp[] = s.split(“c”);

One would normally think that this would produce two elements for the sp array (sp[0] =
“Hello good ” and sp[1] = “buddy”). This is not the case. In fact, it produces three
elements (sp[0] = “”, sp[1] = “Hello good ”, and sp[2] = “buddy”). This anomaly of an
empty String occurs when a delimiter is at the beginning of the String, but strangely
enough, not when a delimiter is at the end.

Fortunately, for the sake of counting delimiters, one at the beginning of a String is
automatically handled since sp[0] = “”. A delimiter at the end of the String is easily
handled with the concatenation of extra characters to the end of the String.

Our project will be to count all occurrences of the letter s followed by the letter a. Case will be
ignored, and it will be permissible to have any amount (including none) of white space between
the s and the a.

Call your project CountEmRight and create just one class, Tester. In the main method, do the
following:

• Create a loop that asks for String input (a sentence).
• Release from the loop if the input String is “EXIT”.
• So as to ignore case, convert the input String into an uppercase version of itself.
• Concatenate some “harmless” String to the end of the input String. By “harmless” it is

meant that it should not contain any occurrences of the delimiter expression. This is the
real secret to this project… to get any occurrence of the sought after expression off the
end and into the “interior” of the String.

• Use the split method to produce a String array (call it sp). Then use sp.length –1 to
count the number of occurrences.

A typical run will appear as follows:

Type in a sentence and press ENTER. His initials are SA
There are 2 occurrences.

Type in a sentence and press ENTER. Sad but true, their teams are
better.
There are 2 occurrences.

Type in a sentence and press ENTER. S a sa ssa s a
There are 4 occurrences.

Type in a sentence and press ENTER. exit

18-6

Exercise on Lesson 18

1. Write code that will declare a double array called sgt having 800 elements.

2. double []dfw = new double[21];
System.out.println(dfw.length); //What is printed?

3. For the code in #1 above, write a for-loop that will cycle through all the elements of
double sgt[] and store the square root of the index of each element in that element.

4. Assuming rtl is the name of an array, what’s wrong with this code?
double rtl_len = rtl.length();

5. On one line of code, both declare a character array called cr and initialize its elements
to be ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’.

6. Refer to #5 above. What is the value of cr.length ?

7. Write code that will print the sum of the squares of the all elements of the ref integer

array.

8. What’s wrong with the following code?
for (int k = 2; k < homer.length; k++)
{
 homer[k +1] = k;
}

9. Fill in the blanks below to enable us to pass a double array called dbx to a method
called heroWorship. Within the method, the array should be called vb.

boolean bbc = heroWorship();

 public boolean heroWorship() //signature of method

10. Assume the five values an integer array adc contains are: 34, 56, -102, 18, and 5.
What is the value of adc[1] ?

11. Using the adc array from #10 above, what would be the value of adc[3] + adc[4]?

12. Using the adc array from #10 above, what would be the value of adc[5] ?

18-7

13. Describe what the following code segment does:
for (int j = 0; j < b.length; j++)
 b[j] = Math.abs(b[j]);

14. For the int array c = {1, 2, 3, 4}, what would be the output of the following code?
String ss = “>>>”;
int len = ss.length();
for (int j = 0; j < len; j++)
 ss+= c[j];
System.out.println(ss);

15. Write a loop that locates the first occurrence of a negative integer in an array, pg.
When the loop is finished, the variable indx should contain the index of the negative
number, or the length of the array if there were no negative numbers in the array.

16. String wc = “Whooping crane”;
String sp[] = wc.split(“oo”);
for(int j = 0; j < sp.length; j++)
{
 System.out.println(sp[j]);
}

17. List the elements of String []sArray = “fee fi fo ”.split(“\\s+”);.

18. List the elements of String []sp = “One two”.split(“Q”);.

19. Using the split method, write code that will count all of the occurrences of “th”
(without regard to upper or lower case) in “The best THERE is is Barth”.

Project… Array of Hope

This project called ArrayOfHope will consist of just one class, Tester, that in turn, has just one
method, main. The main method will use two for-loops:

• The first loop will produce an integer count from 65 to 90 (notice these are the ASCII
codes for characters A…Z) and initialize the elements of the character array ch[] with
the characters corresponding to the ASCII codes being generated by the loop. This will
fill the ch[] array as follows: ch[0] = ‘A’, ch[1] = ‘B’, …, ch[25] = ‘Z’.

• The second loop will print the 26 elements of the ch[] array with one comma followed

by one space between adjacent characters as follows:

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z

19-1

Lesson 19…..Advanced Array Concepts

Arrays of objects:

Circle cir[] = new Circle[500]; //declares 500 circles, all null for the moment

//We can initialize each of these 500 Circle objects individually as shown here
cir[117] = new Circle(57.2); //set radius to 57.2

for (int j = 0; j < 500; j++) //…or we can initialize them in a loop
{
 cir[j] = new Circle(10); //all radii set to 10
}

Comparison of array values:

We will give examples of boolean values within fragments of if statements; however,
any other such usage of boolean values using arrays would be acceptable:

a. Numeric arrays:
if (n[23] = = n[k+1])
if (n[23] >= n[k+1])

b. String arrays:

if (s[3 +d] .equals(“hermit”))
if (s[3 +d] .compareTo(“hermit”) > 0)

c. Object arrays:

if (BankAccount[1].equals(BankAccount[2]))

The dreaded NullPointerException:

double mxz[]; //the array mxz has only been declared
mxz[3] = 19.1; //error! NullPointerException, mxz has not been initialized yet.

Different references to the same array:

Because arrays are objects, two or more variables can refer to the same array as in the
following example:

int []frst = {1, 2, 3, 4, 5}; // frst[] declared and initialized
int sec[]; // sec[] is just declared

sec = frst;
sec[2] = 99;
System.out.println(frst[2]); //99 Notice that even though we changed only

 //sec[2] to 99, frst[2] also changes to 99.

Declaring multiple arrays…which to use, []x or x[]?
When declaring multiple arrays on a single line, the placement of [] is critical.

int[] x, y; //Both x and y are arrays.
int x[], y; //Only x is an array.

Removing an array from memory:
It is possible for the GarbageCollector to release the memory of an array (or any object).
To enable this, simply set all references to the array (or object) equal to null as follows:

19-2
int myArray[] = new int[500]; //occupies 500 * 4 bytes of memory
. . .
myArray = null; //occupies almost no memory now
myArray[45] = 2003; //generates a “null pointer exception”

A major lesson here is that you can set any object equal to null.

Copying from array to array:
System.arraycopy(theFromArray, fromIndex, theToArray, toIndex, howMany) to copy
part of an array to part of another array. The five parameters are explained as
follows:

a. theFromArray…the array from which we are copying, i.e., the source.
b. fromIndex…the index in theFromArray from which copying starts.
c. theToArray…the array to which we will copy, i.e., the destination.
d. toIndex… the index in theToArray at which copying starts.
e. howMany…the number of array elements to copy.

If you have trouble remembering the order of from and to, just remember this
little ditty, “From me to you.”

Example:
 char ch[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’};
 char nn[] = {‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’};
 System.arraycopy(ch, 1, nn, 2, 3);

The destination array, nn will now look like this:
{‘1’, ‘2’, ‘b’, ‘c’, ‘d’, ‘6’, ‘7’, ‘8’} ch array is unchanged.

Converting a String into a character array (and vice versa):

A String method we have not previously discussed is the toCharArray (signature: public
char[] toCharArray()) method. Here is how it’s used:

char ch[]; //declared, but not initialized
String s = “ABCDE”;
ch = s.toCharArray(); //this initializes the ch array

Here’s what the character array ch looks like now: {‘A’, ‘B’, ‘C’, ‘D’, ‘E’}

It is also possible to reverse the process and convert character array ch directly
into a String with:
 String s = String.copyValueOf(ch); //String.valueOf(ch) does the same.

There is another version of copyValueOf whose signature is:
 static copyValueOf(char[]ch, int offset, int count)

Logical versus physical size of an array:

The logical size of the array in the following example is 5 since we only store numbers in
the first 5 elements of this array. Notice the variable max in this particular example
determines the logical size. The physical size (30 in this example) is always easy to
determine. It’s always jk.length;

int jk[] = new int[30]; //physical size… 30
int max = 5;

19-3
for (int j = 0; j < max; j++)
{
 jk[j] = j * 36;
}

The Arrays class:
This special class has some very useful methods that assist in the manipulation of
arrays…especially sorting. For each of these methods we offer a description, the
signature, and an example. To get these methods to work, you must import the Arrays
class by putting import java.util.*; at the very top of your program. See Appendix I for
more on the process of importing.

Sort:
Sort the array in ascending order (uses a merge sort…see Lesson 41).

public static void sort(int a[]) //Signature
Example:
int b[] = {14, 2, 109, . . . 23, 5, 199};
Arrays.sort(b); //The b array is now in ascending order.

See the project at the end of this lesson where you will actually sort an array.

Binary search:
Perform a binary search (see Lesson 51) of an array for a particular value (this
assumes the array has already been sorted in ascending order). This method
returns the index of the last array element containing the value of key. If key is not
found, a negative number is returned… –k –1 where k is the index before which
the key would be inserted.

public int binarySearch(int a[], int key) //Signature
Example:
//Assume array b[] already exists and has been sorted in ascending order.
//The b array now reads {2,17, 36, 203, 289, 567, 1000}.
int indx = Arrays.binarySearch(b, 203); //search for 203 in the array
System.out.println(indx); //3

Equality:
Test for the equality of two arrays.

// Compares corresponding elements: true if the same…otherwise false.
public boolean equals(int a[], b[]) //Signature…

Example:
int x[] = {1, 2, 3, 4, 5};
int y[] = {1, 2, 3, 4, 5};
int z[] = {1, 2, 9, 4, 5};
System.out.println(Arrays.equals(x, y); //true
System.out.println(Arrays.equals(x, z); //false

Fill:
Fill an array with some specified value.

public void fill(int [], v) //Signature…fill array a with value v.
Example:
int pk[] = {1, 2, 3, 4, 5};

19-4
Arrays.fill(pk, 77); //Array now looks like this {77, 77, 77, 77, 77}

String equivalent:
An entire array can be converted to a String similar to “[2, -3, 5, 18, 22]”.
 Example: Arrays.toString(myArray); //Typically printed as a test

The above discussion is for the int type arrays; however, all methods work for
arrays of any of the primitive types and Strings. The sort method works for objects
from any class implementing the Comparable interface... All methods are static.

Command Line arguments:

Let’s take a final look at the signature for the main method:

 public static void main(String args[])

Now that we know about arrays, we can see that “String args[]” is declaring args as a
String array. But where and how is this args[] array to be used? (Incidentally, this
args[] array could be called by any legal variable name.)

The args[] array allows us to pass command line arguments to the main method.
Entering a command line (see Appendix X) at the DOS prompt is one way to run a Java
program. To do this you would need to be in a DOS console via the sequence Start | Run |
cmd (don’t use the older command) | OK):

 java MyClass -46 Fleetwood.bat

What exactly does all this mean? The leading word java means to run the Java executable
file (java.exe), MyClass (shown below) is the class containing the main method you wish
to run, -46 is a String representing the first parameter we are passing (stored in args[0]),
and Fleetwood.bat is a String representing the second parameter we are passing (stored
in args[1]).

public class MyClass
{
 public static void main(String args[])
 {
 System.out.println(args[0]); //-46
 System.out.println(args[1]); //Fleetwood.bat
 }
}

Using a command line argument from the DOS prompt is a little awkward. Generally,
you will need to first issue the command cd C:\Program Files\Java\jdk1.5.0_04\bin to
change to the folder in which java.exe resides. (Your Java folder’s name may be
different.) You will also need to have compiled your class file (resulting in a file with
extension .class) and have it stored in this same bin folder.

For users of the BlueJ Environment there is a much easier way to pass command
line arguments. When you are ready to launch your main method, click on void
main(args) and then in the resulting dialog, enter your arguments between the two
braces as follows: {“-46”, “Fleetwood.bat”}

19-5

Be sure to include the quotes. You can have as many arguments as you like. Many times,
only two are used. It is customary to interpret those Strings starting with a “-” as options
and others as file names; however, as a programmer you may assign any desired
meaning.

Using an array variable as an index:
 Consider the following code that uses an array variable as an index for an array variable:

 int ary[] = {5, 6, 7, 8, 9, 10};
 System.out.println(ary[ary[0]]); //10 … ary[0] = 5, ary[5] = 10

The enhanced for loop (“for-each” style):

With the advent of Java 5.0 comes the much awaited “for-each” style of for loop. It is
officially referred to as an enhanced for loop. Fundamentally, it lets us automatically
loop through all the elements of a collection of objects, such as an array, from start to
finish. This is done without specifying the length of the array and without an artificial,
dummy integer index.

Traditional for-loop example:

This is illustrated below; first, by showing the traditional way of summing the
squares of a sequence of numbers stored in array x:

 int x[] = {4,3,2,1};
 int sum = 0;
 for(int j = 0; j < x.length; j++)
 sum = sum + x[j] * x[j];
 System.out.println(sum); //30… this is the problem 42 + 32 + 22 + 12

Enhanced for-loop example:

With the “enhanced for” style, the equivalent code would be:

 //Equivalent code using the enhanced for method
 int x[] = {4,3,2,1};
 int sum = 0;

 for(int varName: x)
 sum = sum + varName * varName;

 System.out.println(sum); //30

Notice here in the parenthesis of the for-loop, x is the name of the object
collection through which we wish to iterate, while varName is the local name
given to it for use on each iteration of the loop. Thus, we can state the following
syntax rule for the “enhanced for” style:

for(Type DummyName: ObjectCollectionName)

Read-only:
Unfortunately, the loop variable of the enhanced for loop is “read-only” with
regard to DummyName in the example above, thus making its usefulness
somewhat limited. This is illustrated by the following code in which we loop
through all the elements of the str array in which we “try” to change their values:

19-6

String str[] = {“one”, “two”, “three”};
for(String ss: str)
{ ss = “zero”; }

Beware: The expectation would normally be for all three elements of the str array
to now equal “zero”; however, they remain the same. This is because the loop is
read-only with regard to ss. This code will compile and run; however, it
accomplishes nothing. It should be noted, however, that direct references to the
str array within the loop would be capable of changing the array.

Exercise for Lesson 19

1. Write code that will create an array of 300 BankAccount objects. You are only to
instantiate two of them. The object with index 47 should have a beginning balance of
$92, and index 102 should have $1007. The name of your array will be ba.

2. Write an if statement that will decide if k[3] is equal to jm[5] where it is assumed that k

and jm are numeric arrays.

3. Write an if statement that will decide if s[2] is equal to ss[19] where it is assumed that s
and ss are String arrays.

4. Write an if statement that will decide if cir[2] is equal to cirr[10] (with regard to content)

where it is assumed that cir and cirr are object arrays of type Circle.

5. What’s wrong with the following code?
char months[];
months[0] = ‘j’;

6. String suv[] = new String[20];
j = 0;
while(j < 17)
{
 suv[j] = “Hello”;
 j++;
}
What is the logical size of the suv array?
What is the physical size of the suv array?

7. Write code using toCharArray to convert String d = “The quick brown fox jumped over

the lazy dog.” into the character array qbf.

8. double rub[] = {23.0, -102.1, 88.23, 111, 12.02, 189.119, 299.88};
double dub[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
Write a single line of code (using arraycopy) that will result in dub looking like this:
 {1, 2, 3, 4, 111, 12.02, 189.119, 8, 9}

19-7

9. double[] zz, top = {12.1, 13.1, 14.1, 15.1, 18};
zz = top;
zz[2] = 99;
top[3] = 100.2;
Show what “both” arrays would look like at the completion of the above code.

10. char[] a, b;

a = “Groovy dude”.toCharArray();
b = “I like this”.toCharArray();
System.arraycopy(a, 1, b, 0, 4);
What do the two arrays look like at the completion of this code?

11. What must be true of any array before we can use Arrays.binarySearch()?

12. Write code that will establish an array called myArray having the following elements,

{189.01, 2000, -32, 56, 182, 2}. Then sort the array.

13. Assume the array myArray in #12 has been correctly sorted. What would be printed with
the following?

System.out.println(Arrays.binarySearch(myArray, 56));
 System.out.println(Arrays.binarySearch(myArray, 102));

14. What does the following print?

int xc[] = {123, 97, -102, 17};
int pk[] = {123, 79, -102, 17};
int gs[] = {123, 97, -102, 17};
System.out.println(Arrays.equals(xc, pk) + “\n” + Arrays.equals(xc, gs));

15. What does the following print?

int pickle[] = {1, 2, 3, 4, 5, 6, 7, 8};
Arrays.fill(pickle, -1);
System.out.println(pickle[4]);

16. If a command line reads, java BigClass Munster Herman dude, what will the following

line inside the main method print?
System.out.println(“Name=” + args[2] +args[1]);

17. What’s printed by the following?

int px[] = {3, 4, 5, 6, 7, 8, 9};
System.out.println(px[px[1] + 1]);

18. Write code using the “for-each” style of a for loop that will accumulate and print the

product of the state variables int jj within each object of object array objArray. Assume
the objects are created from the class DummyClass.

19-8

Arrays… Contest Type Problems

1. What is the value of gem[1] in the code to the right?

A. –102
B. 14
C. 5
D. 100
E. –100

2. Which code will sort the gem array in the code to the right?

A. mergeSort(gem);
B. Arrays.sort(gem[]);
C. Arrays.sort(gem);
D. Collections.sort(gem);
E. Both C and D

int [] gem = {-102, 14, 5, 100, -100};

3. What is the value of g when accessing the code to the right?

 int [] stk = {1, 5, 19, 2, 20, 180};
 int g = nerdStuff(stk) + 1;

A. 3
B. 2
C. 0
D. 7
E. None of these

public static int nerdStuff(int [] cb)
{
 int counter = 0;
 for(int k=0; k<cb.length; ++k)
 if(cb[k] < 3)
 ++counter;
 return counter;
}

4. Which of the following lines of code is a proper way to declare and initialize the c array?

A. int [] c = new int[] {1, 2, 3, 4};
B. int [10] c = {1, 2, 3, 4};
C. int c = {1, 2, 3, 4};
D. int[] c = new int {1, 2, 3, 4};
E. Both A and B

5. What should replace <*1> in the code to the right in order
that the for-loop variable, j, would cycle through all indices of
the a array?

A. j < a.length - 1
B. j < a.length()
C. j <= a.length
D. j < a.length + 1
E. None of these

6. If <*1> has been filled in correctly in the code to the right,
and a[3] = 19 before calling testLoop, what is a[3] afterwards?

A. 3
B. 19
C. 18
D. 20
E. None of these

public static void testLoop(int [] a)
{
 for(int j=0; <*1>; ++j)
 ++a[j];

}

19-9

7. What is output in the code to the right?

A. ancp
B. mbod
C. aocq
D. abcd
E. None of these

public class ArrayTest
{
 public static void main(String [] args)
 {
 String s1 = "abcdefghijk";
 char [] x = s1.toCharArray();
 String s2 = "mnopqrstuvw";
 char [] y = s2.toCharArray();
 int vv[] = {0,1,0,1};
 for(int j=0; j<vv.length; j++) {
 switch (vv[j])
 {
 case 0:
 System.out.print(x[j]);
 break;
 case 1:
 System.out.print(y[j+1]);
 }
 }
 }
}

8. What is output in the code to the right?

A. 14
B. 15
C. 16
D. Throws an exception
E. None of these

public class ArrayTest
{
 public static void main(String [] args)
 {
 int a[] = {0,1,2,3};
 int b[] = a;
 int sum = 0;
 for(int j=0; j<3; j++) {
 sum+=(a[j+1] * b[j]) + (a[j] * b[j+1]);
 }
 System.out.println(sum);
 }
}

9. What is output in the code to the right?

A. 102
B. 44
C. 56
D. Throws an exception
E. None of these

public class ArrayTest
{
 public static void main(String [] args)
 {
 int [] z1 = {2,3,4,5,6};
 int [] z2 = {1,2,1,2,1};
 double d = 0;
 for(int j=0; j<3; j++)
 {
 d = d + Math.pow(z1[j+1], 2) + Math.pow(z2[j], 2);
 }
 System.out.println(d);
 }
}

19-10

10. What is output in the code to the right?

A. 1002003007080
B. 1002007080500
C. 405030040080
D. 405060300400
E. None of these

public class MyTester
{
 public static void main(String args[])
 {
 int j, src =2, des=3, hm=2;
 int [] sa = {100,200,300,400,500};
 int [] da = {40,50,60,70,80};
 System.arraycopy(sa,src,da,des,hm);
 for(j=0; j<da.length; j++)
 System.out.print(da[j]);
 }
}

11. What is output in the code to the right?

A. 6
B. 1
C. 0
D. 2
E. Throws an exception

public class MyTester
{
 public static void main(String args[])
 {
 int [] aleve = new int[] {0,1,2,3,4,5,6,7,8};
 int n = 6;
 n = aleve[aleve[n]/2];
 System.out.print(aleve[n]%2);
 }
}

12. What replaces <#1> so that the product
 of all the elements in array d is returned?

A. for(double j: d) product *= d[j];
B. for(int j = 0; j < d.length; j++)

 product = product * j;
C. for(int j = 0; j < d.length; j++)

 product*= d[j];
D. for(double j: d) product *= j;
E. More than one of these

public static double getProduct()
{

double d[] = {100, -25, 16, 27, -102};
double product = 1;
<#1>
return product;

}

19-11

Project… Sorting a String Array

Create a String array call ss. It will contain the following Strings in the order shown.

{“Bill”, “Mary”, “Lee”, “Agnes”, “Alfred”, “Thomas”, “Alvin”, “Bernard”, “Ezra”,
“Herman”}

Using the technique described on page 19-3, sort this array and then print the contents of the
sorted array (using a loop) from index 0 to the last. Call both your project and class,
SortStringArray. Confine all of your code to the main method.

The printout should look like the following:

Agnes
Alfred
Alvin
Bernard
Bill
Ezra
Herman
Lee
Mary
Thomas

Project… Two Orders for the Price of One

Modify the project above so as to print two side-by-side columns. Call both your project and
class AscendDescend. The first column should be in ascending order and the second in
descending order. The output should appear as below (Be sure to include the headers):

Ascend Descend

Agnes Thomas
Alfred Mary
Alvin Lee
Bernard Herman
Bill Ezra
Ezra Bill
Herman Bernard
Lee Alvin
Mary Alfred
Thomas Agnes

20-1

Lesson 20…..static Methods and State Variables

You should be aware that static methods are sometimes called class methods. Similarly, static
instance fields (static state variables) are called class variables. The reason for the class
designation is that when we access either static methods or variables, we are accessing them at
the class level rather than at the object level. (In this course, we will primarily use the word
static rather than class as the designation of such methods and variables.). This is a profound
statement that you will likely only come to appreciate as we move through the material below.
…There are two primary reasons for using the key word static.

The first reason for using static:

We are accustomed to calling a method or accessing a data member (state variable) by
first creating an object and then using that object to reach the method or variable. To
recall how we do this, consider this class:

public class Nerd
{
 public Nerd()
 { . . . }

 public double methodA(int x)
 { . . . }

 public void methodB(String s)
 { . . . }
 public double abc;
 public int xyz;
}

If we want to call methodB or access abc from outside the Nerd class, here is how we
have had to do it in the past:

 Nerd geek = new Nerd(); //we create a Nerd object called geek
geek.methodB(“Some words”); //Here we call methodB, but notice we must use

 //the object (geek) we created to do it
 geek.abc = 32.38; //Similarly we use the object (geek) to access the state variable

Now, we are going to show how to do this without having to create an object. First we
will do a slight rewrite of the Nerd class.

public class Nerd
{
 public Nerd()
 { . . . }

 public double methodA(int x)
 { . . . }

 public static void methodB(String s)
 { . . . }
 public static double abc;
 public int xyz;
}

20-2
Accessing without an object:

Notice the key word static has been inserted into two places. Both the data
member abc and methodB are static which makes the following legal from the
“outside world”:
 Nerd.methodB(“Some words”);
 Nerd.abc = 32.38;

Notice that we did not need to create an object this time. Rather we used the name
of the class. (That’s why they’re sometimes called class variables and methods.)

Well, this is all rather strange, isn’t it? We just aren’t accustomed to doing
this….But wait! Oh, yes we have done this before. Remember our usage of
Math.PI ? Math is a class within Java and PI is a data member there. Guess what?
It’s static. That’s why we can access it without creating an object.

static method from the past:

Is there an example of where we have used a static method in the past? Yes,
again. Recall using Math.sqrt(56.23)? In fact, all of the methods we have studied
in the Math class are static. We just need to precede the name of the variable or
method with the name of the class.

So, there you have it, the first reason for having static variables and methods …the
ability to access them without having to create an object. It should be pointed out that
we can still access static methods and variables by creating objects…

…obj.methodB(“Some words”), obj.abc, etc. if desired.

Finally, while we are on this topic, we are now able to see why static is present in the
familiar, public static void main(String args[]) signature. It’s because we are accessing
the main method from the “outside world” (the development environment; BlueJ,
JCreator, etc.) without creating an object and we now know that the key-word static is
necessary for us to be able to do that.

The second reason for using static:

We will now examine a class with static state variables and see what happens when we
create various instances of this class. (Notice that’s the same as saying we create various
objects from the class.)

public class Dweeb
 {
 . . . some methods and state variables . . .
 public static int x;
 }

We will now instantiate some objects from this class and manipulate the static data
member x. (The following code is assumed to be in the main method of some other class.)
 Dweeb.x = 79;

System.out.println(Dweeb.x); //79…object not necessary to access x

 Dweeb twerp1 = new Dweeb(); //Create objects and still we access the
 System.out.println(Dweeb.x); //79 same, shared value of x
 System.out.println(twerp1.x); //79
 twerp1.x = 102;

20-3

Dweeb twerp2 = new Dweeb();
System.out.println(Dweeb.x); //102

 System.out.println(twerp2.x); //102
System.out.println(twerp1.x); //102

So, we see a second great principle of static data members. They are shared by all
instances (all objects) of the class. In fact, the static variables are still present and
available even if no objects are ever instantiated.

Accessing methods and data members from within a static method:

If from within a static method we try to access another method and/or data member of the
same class, then that other method and/or state variable must also be static. This is
illustrated in the following code:

public class Tester
{
 //Since this method is static, all other methods and state variables
 //in its own class that it accesses must also be static.
 public static void main(String[] args)

{
 . . . some code . . .
 double yz = methodF();
 double ab = yz + sv;
}

. . .more methods . . .
public static double methodF()
{ . . . some code. . . }

public static double sv = 99;

}

a. Static methods can reference only static variables and never the “regular”, non-
static instance variables.

b. Non-static methods can reference either.

Sequence doesn’t matter:

Within some class, we might set up a class variable as follows:
public static String s;

 The key word sequence public static can be reversed:
 static public String s; //Can also be written this way, but usually the other way.

Even static methods can be written with the key-word static coming before public;
however, it’s rare to see this in actual practice.

Static constants:

Constants can also be static as demonstrated in the following example:
public static final double PI = 3.14159;

20-4

Static imports:
With the advent of Java 5.0 the cumbersome use of static methods and variables can now
be simpler and more readable. For example, Math.sqrt(x) and System.out.println(x); can
now be written as just sqrt(x) and out.println(x); however, the appropriate static imports
must be made:
 import static java.lang.Math.*;

import static java.lang.System.out;

Exercise on Lesson 20

The following code will apply to problems 1 – 7:

 public class TvShow
 {
 public TvShow(String nm)
 {

numShows++;
showName = nm;

 }

 public static int numberOfShows()
 {
 return numShows;
 }

 public void setActor1(String act1)
 {
 actor1 = act1;
 }

 public String actor1 = “Don Knots”;
 public static String actor2 = “Homer Simpson”;
 public static int numShows = 0;

 public static int x = 59;
 public int y = 1059;
 public String showName;

 }

1. At any time after several TvShow objects have been instantiated, how would you find out

how many shows were instantiated? (Don’t use an object to do this.)

2. Would the code inside the numberOfShows method still be correct if numberOfShows

were non-static? If not, why?

3. Suppose the code inside the numberOfShows method is replaced with the following line:

return y;
 Is this legal? If not, why?

20-5

4. Write code that will print the data member actor2. Do this without instantiating any
objects.

5. Is the following code legal? If not, why?
TvShow.setActor1(“Jimmy Stewart”);

6. Create an instance of TvShow called chrs (pass in the String “Cheers”) and use it to
access and print the class variable numShows.

7. Give the output of the following:
System.out.println(TvShow.x);

TvShow chrs = new TvShow(“Cheers”);
System.out.println(TvShow.x);
System.out.println(chrs.x);

TvShow hc = new TvShow(“History Channel”);
hc.x = 160;
System.out.println(TvShow.x);
System.out.println(hc.x);

**

8. Is the following a legal declaration of a class variable? If not, why?
static public char ch = ‘K’;

9. Write code that will cause the variable zxb to be a static state variable. The variable zxb is
a double.

10. Write code that will cause sn to be a constant static class member. The constant sn should
be initialized as an empty String.

11. What is the significance of the word Math when we use Math.pow(3.2, 4.001)?

12. Class variables are also called variables.

13. Assuming that the appropriate static import has been done, rewrite the following code
without using the class name of the static methods.

double xop = Math.pow(Math.sqrt(x - zv), 3.1);

14. What are the two primary reasons for using the key-word, static?

20-6

Project… How Far To The Line?

Create a new project called DistToLine having a class by the same name. The purpose of this
class will be to calculate the distance from a point (a, b) to a line given by equation Ax + By + C
= 0. The formula giving this distance is a standard one from analytic geometry, and is given
below.

 Dist = | Aa + Bb + C | ÷ √ A2 + B2

.(a, b)

Fig

The class will have no constructor and since we
without creating an object, the three state varia
will all need to be static. The method will receiv
the point.

Here is how things will be organized in the class

• Call the class DistToLine.
• Create static double state variables A, B,
• Create the signature of the static method

return a double representing the calculate
• In the body of this method, implement th

Create a Tester class as part of this project that w

• Set the static state variables A, B, and C w
• Call the method getDist and pass as argum
• Print the returned double as the distance f

Typical output of the Tester class is shown below

Enter the A value for the li
Enter the B value for the li
Enter the C value for the li
Enter the x coordinate of th
Enter the y coordinate of th

Distance from the point to t
Dist
Ax + By + C = 0

. 20-1 Distance from a point to a line

want to be able to compute the above distance
bles (A, B, & C) and the only method (getDist)
e two double parameters a and b that represent

:

and C.
getDist. It will receive doubles a and b. It will
d distance.
e distance formula above and return that value.

ill:
ith the corresponding values of the desired line.
ents the coordinates of the desired point.

rom the point to the line.

:

ne: 2.45
ne: 4
ne: -8
e point: 2.17
e point: -4

he line is: 3.9831092774319026

20-7

static Methods and State Variables… Contest Type Problems

1. Which of the following is not a legal way to
access vehicleCount from within some other class?
(assume that gpsZ is a GpsTrack object)

A. double d = gpsZ.vehicleCount;
B. vehicleCount = 27;
C. gpsZ.vehicleCount = 27;
D. int i = GpsTrack.vehicleCount;
E. All are legal

2. Which of the following is not a class variable?

 A. longitude B. latitude C.vehicleID
 D. vehicleCount E. They are all class variables

3. If no objects have yet been instantiated, what is
the value of GpsTrack.vehicleCount after the
following code executes?

GpsTrack gpsA = new GpsTrack(1);
GpsTrack gpsB = new GpsTrack(3);

 A. 0 B. 1 C. 2 D. 3 E. None of these

4. Which of the following replacements for <#1>
are legal?

A. String s = quad;
B. int vc = vehicleCount;
C. int id = vehicleID;
D. More than one of these
E. They are all illegal

public class GpsTrack
{

public GpsTrack(int id)
{

vehicleCount++;
vehicleID = id;

}

public static double getLonPos()
{

//Code not shown
}

public static double getLatPos()
{

//Code not shown
}

public double diffCor()
{

…
<#1>
…

}

//Other methods not shown

public static double longitude;
public static double latitude;
public int vehicleID;
public String quad = “”;
public static int vehicleCount = 0;

}
5. Is it possible for a constant to also be static?

 A. Yes B. No C.Yes, but only if the entire class is static
 D. Yes, but only if it’s a numeric E. No, unless it’s leap year

6. The statement double d = Math.sqrt(pow(3.1, 4.67)) is which of the following?

A. Evidence that Math is a static class
B. Evidence that sqrt is a static method
C. Evidence that a static import was done so that pow (3.1, 4.67) is legal
D. Only A and C
E. Only B and C

21-1

Lesson 21…..Wrapper Classes

Primitive data types are int, double, boolean, char, and some others of less importance that we
haven’t studied yet. Some of those others are (See Appendix C for a summary of all the numeric
data types.):

1. long…an integer…gives more digits than int.
2. short …an integer…gives fewer digits than int.
3. float …a floating point number (a double is also a floating point number)… gives

fewer significant digits than double.

Objects required instead of primitives:

Shortly, we will begin studying classes that require primitive data types to be stored in
them in a special way. The requirement will be for essentially everything to be stored as
objects. There are special classes that permit us to convert primitives into objects and
thus satisfy the demands of those classes that insist on being fed only objects. The
classes that convert primitives to objects are called the Wrapper Classes…because they
“wrap” the number, boolean, or char inside an object. Another term for this is “boxing”
with the number being stored in a “box” (an object).

Four important wrapper classes:

The wrapper classes of greatest importance are Integer, Double, Boolean, and Character
(notice the capital letters). In the examples below, notice that the awkward pre Java5.0
way of doing this is demonstrated in the comments.

1. Integer class examples:
Integer ic = 7; //Integer ic = new Integer(7);

int i = 10;
Integer ii = i; //Integer ii = new Integer(i);

2. Double class examples:

Double dc = 1003.45; //Double dc = new Double(1003.45);

double d = -82.19;
Double dd = d; //Double dd = new Double(d);

3. Boolean class examples:
Boolean bc = false; //Boolean bc = new Boolean(false);

boolean b = true;
Boolean bb = b; //Boolean bb = new Boolean(b);

4. Character class examples:

Character wc = ‘X’; //Character wc = new Character(‘X’);

char ch = ‘s’;
Character cc = ch; //Character cc = new Character(ch);

The Wrappers classes for the other primitives (float, long, etc.) are done in exactly the same
way.

21-2

We can take these wrapper objects and store them in those special classes that demand them.
While we are not directly storing primitives there, we are at least storing a “version” of them.

Arithmetic operations on wrapper class objects:

What if we want to multiply (or perhaps add) two wrapper class Integers? How do we do
it? From example 1 above we have Integer objects ic and ii. Do we just say ic * ii?
“Yes,” if Java 5.0 is being used because it uses “auto-unboxing” to convert the object
versions back into primitive types before doing the actual multiplication. For the sake of
understanding backwards compatible code, here’s how it must be done with the older
versions of Java:

 //First, convert back to int form
 int j = ic.intValue(); //Get the int value of object ic and store in j.
 int k = ii.intValue(); //Similarly, get the int value of object ii and store in k.

 //Now perform the multiplication with the int versions j and k
 int product = j * k;

Converting back to primitives:

We just looked at some “backwards” conversions above in which we converted from
wrapper class Integer objects back to primitive int versions (also called “unwrapping” or
“unboxing”). Let’s look at all such conversions from Wrapper Class object back to
primitives, but before presenting these examples it should be stated again that if Java 5.0
or higher is being used, “auto-unboxing” takes place as illustrated by:

• int i = iObj; //iObj is an Integer object
• double d = dObj; //dObj is a Double object
• …etc…

1. Assume iObj is an Integer object.

a. int i = iObj.intValue(); //most often used…convert to int
b. short s = iObj.shortValue(); //convert to short
c. long el = iObj.longValue(); //convert to long
d. float f = iObj.floatValue(); //convert to float
e. double d = iObj.doubleValue(); //convert to double

2. Assume dObj is a Double object

a. int i = dObj.intValue(); //convert to int…loses fractional part
b. short s = dObj.shortValue(); //convert to short…loses fractional part
c. long el = dObj.longValue(); //convert to long…loses fractional part
d. float f = dObj.floatValue(); //convert to float…might lose some precision
e. double d = dObj.doubleValue(); //most often used…convert to double

3. Assume bObj is a Boolean object

boolean b = bObj.booleanValue(); //convert to boolean

4. Assume cObj is a Character object
char ch = cObj.charValue(); //convert to char

21-3

Likewise, the Wrapper classes for the other numeric types (float, short, etc.) have conversion
methods.

 Exercise on Lesson 21

1. The classes that convert primitives to objects are called classes.

2. Name the four primitive data types with which wrapper classes primarily deal.

3. Write code that will convert double dx into a wrapper class object. Call the object dd.

4. Write code that will produce a Boolean type wrapper object called bj (“wrap” a true

inside it).

5. Write code that will convert the integer ip into an Integer wrapper class object. Call the

object ozzie.

6. Assume you have the object Character cw. Write code to convert this to a primitive

character.

7. Assume you have Double objects d1 and d2. Show how you would multiply the values
stored in these objects and then store the answer in primitive double dd.

8. Assume you have Integer objects i1 and i2. Show how you would add the values stored

in these objects and then store the answer in a third Integer object called i3.

9. Write code that will extract the boolean wrapped in the Boolean wnOh and test it with an

if statement.
if ()

10. Convert the object jj (of type Double) into a primitive float called ff.

11. Convert the object pk (of type Double) into a primitive int called gurg. What is the

danger of doing this?

12. What is the primary purpose of wrapper classes?

22-1

Lesson 22…..Additional Methods of Wrapper Classes

Main purpose:

As was stated in the last lesson, the main purpose of the Wrapper classes is to convert
the primitive data types into their object equivalents. Here, in this lesson we explore
some of the other methods of the Wrapper classes.

Looking for a home:

These particular methods have nothing to do with the objects the Wrapper Classes
produce. They could have been included in any class; however, as a matter of
convenience they were placed in the Wrapper Classes…and especially the Integer class.

Notice that all methods given in this lesson are static, i.e. they do not require an object.

Most frequently used:

The description and signatures of the two very most useful methods are given here:

Conversion from a String to an int type:
public static int parseInt(String s) //signature…from Integer class

Example:
String s = “139”;
int i = Integer.parseInt(s);

The method parseInt is overloaded. Its other form is parseInt(s, base) where the
second parameter, base, is the base of the number represented by String s.

Example:
String s = “3w4br”;
int base = 35;
int i = Integer.parseInt(s, base); //i = 5879187

Conversion from a String to a double type:
public static double parseDouble(String s) //signature…from Double class

Example:
String s = “282.8026”;
double d = Double.parseDouble(s);

The equivalents of these for the Boolean and Character classes do not exist.

When using either the parseInt or parseDouble methods there is a danger of throwing an
exception (causing an error). Suppose we have String s = “123” and we wish to convert
to an int type. This makes perfect sense, and the following line of code using this s will
yield an integer value of 123.

int i = Integer.parseInt(s); //yields i = 123

But what if s equals something like “abc”? How will the parseInt method react? It will
throw an exception. Specifically, it will throw a NumberFormatException.

22-2

Base conversion methods:

In Lesson 14 we became familiar with some base conversion methods of the Integer
class. They all converted int types to the String equivalent of various number systems.
Below are examples of usage where s is assumed to be a String and i is assumed to be an
int type:

1. s = Integer.toHexString(i);
//…or use Integer.toString(i, 16); …see page 14-3

2. s = Integer.toOctalString(i);
//…or use Integer.toString(i, 8);

3. s = Integer.toBinaryString(i);

//…or use Integer.toString(i, 2);

Additional methods:

A description of each is given followed by the method signature and then an example of
usage:

Conversion of an int type to a String:
public String toString(int i); //Signature…from Integer class

 //See 1, 2, & 3 above for a two-parameter
version.

Example:
int i = 104;
String ss = Integer.toString(i);

You should be aware that there is an easier way to convert an integer into a
String. Just append an int type to an empty String and the compiler will think
you want to make a String out of the combination.

Example:
int j = 3;
String s = “” + j; // s will be equal to “3”
s = “” + 56; // s will be equal to “56”

Conversion of a String to an Integer object.

public static Integer valueOf(String s); //Signature…from Integer class

Example:
String s = “452”;
Integer iObj = Integer.valueOf(s);

Data member constants of the Integer class
• Integer.MIN_VALUE has a value of -2,147,483,648
• Integer.MAX_VALUE has a value of 2,147,483,647

These two constants (see Appendix C) give the two extreme possible values of
int variables.

22-3
The SIZE constants:

The wrapper classes Double, Float, Long, Integer, Short, Character, and Byte
all employ the constant SIZE. This reports how many bits comprise the
primitive types that these classes represent. The values are obtained by
multiplying the number of bytes for each type in Appendix C by 8 bits in each
byte. Their values are:

Double.SIZE = 64
Float.SIZE = 32
Long.SIZE = 64
Integer.SIZE = 32
Short.SIZE = 16
Character = 16
Byte.SIZE = 8
Boolean does not have a SIZE constant

Exercise on Lesson 22

1. Write code that will convert a String called rr into an int type called i.

2. The String s contains “123.456”. How would you convert this into a double type
variable?

3. What evidence is there in the following statement that the method is static?

int v = Integer.parseInt(s);

4. How would you convert decimal equivalent String sd to String sh in hex form?

5. Suppose you have an int type stored in jj. How would you convert this into a String?

6. Suppose you must pass the Integer object equivalent of 1000 as a parameter to a
methodA; however, all you have is a String representation ss of that integer. Show how
you would manipulate ss and change it into an object called obj so that it could be used as
a parameter for methodA.

7. What is output by the following code?

String pdq = “-772.29”;
System.out.println(3 + Double.parseDouble(pdq));

8. Assume iObj is an Integer object “wrapping” the value -186. What is output by the

following code?

int ip = iObj; //Pre java 5.0, int ip = iObj.intValue();
String mz = “3” + Integer.toString(ip) + “3”;
System.out.println(mz);

9. Write code that will convert “3pfh” (a String representation of a base 33 number) to int i.

10. Write code that will convert int i into its String equivalent in base 6.

22-4

Wrapper Class Objects… Contest Type Problems

1. What is the output?

A. 0
B. 6
C. 1
D. 2
E. None of these

public class MyTester
{
 public static void main(String args[])
 {
 int j=2, k=3;
 Integer bj, bk;
 while(k>0) {
 j = j*k;
 k = k/2;
 }
 bj = j;
 bk = k;
 System.out.println(bj + bk);
 }
}

2. What is printed when we make the call
getAsum(“22222”)?

A. 9
B. 7
C. 5
D. 2
E. None of these

public static void getAsum(String a)
{
 int total=0;
 Integer p1, p2;
 for(int j = a.length() - 1; j > 1;j--)
 {
 p1 = j-1;
 p2 = j;
 total+=j;
 }
 System.out.println(total);
}

3. What is returned when we make the call
theTest(2)?

A. 3.14
B. 3
C. 2
D. 1
E. 0

public static int theTest(int div)
{
 Integer trial;
 double d = Math.PI/div;
 trial = (int)d;
 return trial;
}

4. What gets printed?

A. 235
B. 234
C. 235.6
D. Throws an exception
E. None of these

 …
Calc myObj = new Calc();
System.out.println(myObj.adjust(117.8));
 …

public class Calc
{
 public static double adjust(double d)
 {
 d *= 2;
 Double dw = d;
 return dw;
 }
}

23-1

Lesson 23…..StringTokenizer Class

Consider the String, “The quick brown fox jumped over the lazy dogs.” Suppose we wanted to
take this sentence apart, word-by-word, and then test or process each word? Right now it’s a
little hard to see what might be the application of doing something like that or why it might be
practical. Rest assured there are plenty of applications (for example, virus detection, email
filtering, etc); however, those apps are a bit advanced for us right now.

Instead, let’s look at another, more practical String for us:
 “128 65 1 586 108 79222”

What we have above are several numbers, all separated by spaces. We might also have the same
list in which commas separate the numbers as follows:
 “128,65,1,586,108,79222”

Tokens:

In either case, what can we do to separate the individual words of a sentence …or as in
the last example, the individual numbers? We call the individual words or numbers,
tokens. The characters that separate them (spaces, commas, etc), are called delimiters.

A class that lets us choose delimiters and then automatically separates out the tokens is
called the StringTokenizer class.

StringTokenizer methods:

Let’s take a look at the various methods available to us from the StringTokenizer class
(we must import java.util.*). For each method, we will give a description and then the
signature of the method. These are not static methods, so we must first show how to
create an object:

 String theString = “128,65,1,586,108,79222”;
 StringTokenizer t = new StringTokenizer(theString, “, \n”); //comma, space, & \n
 //are delimiters

countTokens()

Returns the number of tokens in the specified String that remain to be processed.
public int countTokens() //Signature

Example:
System.out.println (t.countTokens()); //6
//See next example for more on countTokens

nextToken()

Returns the next token in the specified string. Gives an exception (error) if no
more tokens.

public String nextToken() //Signature

Example:
String x = t.nextToken(); //x is now equal to “128”
String y = t.nextToken(); //y is now equal to “65”
System.out.println (t.countTokens()); //4 remain to be processed

23-2

Also, see the example for hasMoreTokens() below for how to prevent nextToken
from throwing an exception.

nextToken(delim)
Establishes a new set of delimiters via String delim and then returns the next
resulting token. Gives an exception (error) if no more tokens.

public String nextToken(String delim) //Signature

Example: (Assume the code in the previous examples has already executed)
String m = t.nextToken(“ ,8\n”); //space, comma, 8, and \n specified as new

 //delimiters. Returns a 1.
 System.out.println(t.nextToken()); //5… as a result of 8 also acting as a

//delimiter.

hasMoreTokens()
Returns either a true or false depending on the presence of more unprocessed
tokens.

public boolean hasMoreTokens() //Signature

Example: (Assume the code in the previous examples has already executed)
if (t.hasMoreTokens())
 System.out.println(t.nextToken()); //6

Note that the above if statement is equivalent to:
if (t.countTokens() > 0)
 System.out.println(t.nextToken()); //6

Constructors:

There are two constructors that you should be aware of when creating
StringTokenizer objects. Each type is illustrated below:

One parameter:

StringTokenizer stok = new StringTokenizer(myString);

There is only one parameter, myString (the String we desire to tokenize).
The delimiters are by default:

 “ \t\n\r\f” i.e., the space, tab, new line, carriage-return, and
 form-feed characters.

Two parameters:
StringTokenizer stok = new StringTokenizer(myString, delimString);

Again, myString is the String we desire to tokenize. String delimString is a
list of desired delimiter characters. For example, if we desire a space, a
plus sign, and the letter “p” as delimiters, then set delimString = “ + p”.

You should be aware that another way to tokenize Strings is by using the split method of the
String class. See Lesson 18, Appendix J, and Appendix AC for more on the split method.

23-3

Exercise on Lesson 23

1. Create a StringTokenizer object called st. We wish to tokenize String zulu and specify
only a plus sign as a delimiter.

2. What are the “things” called that separate the “words” within a String that is to be
tokenized?

3. What are the individual parts or “words” called in a String that is to be tokenized?

4. What is the import we need in order to get the StringTokenizer to work?

5. What is the output of the following code?
StringTokenizer t = new StringTokenizer(“Hello there good buddy”);
String m = t.nextToken();
System.out.println(m + “>>>” + t.countTokens() + “ tokens left.”);

6. Rewrite the following if statement using countTokens() rather than hasMoreTokens().
if (jj.hasMoreTokens())
{ …. }

7. What is the output of the following code?

StringTokenizer g = new StringTokenizer(“Rumplestillskin”, “me”);
System.out.println(g.nextToken());
System.out.println(g.nextToken(“s”));

8. Write a class called SpecialToken that has a static method called thirdToken. This method
should return as a String, the third token of a String that you pass as a parameter. You
may assume that spaces will serve as delimiters.

9. Which constructor for the StringTokenizer class would be simplest to use if you wanted
spaces and tabs as delimiters?

In problems 10 – 13 state what’s printed. Use the following code and assume for each question
that the code in the previous questions has been executed.

StringTokenizer gt = new StringTokenizer(“Humpty Dumpty”, “ pu\n\t”);

10. System.out.println(gt.countTokens());

23-4

11. String radString = gt.nextToken();
System.out.println(gt.nextToken() + radString);

12. System.out.println(gt.countTokens());

13. What should replace ??? below in order to insure that we don’t get an exception?

while (???)
{
 System.out.println(gt.nextToken());
}

14. What is output by the following code?
StringTokenizer tux = new StringTokenizer(“Ignoramus”);
System.out.println(tux.countTokens());
System.out.println(tux.nextToken());
System.out.println(tux.nextToken());

23-5

Project… Military Censor

You are in the Army and have been assigned the task of censoring soldiers’ outgoing mail for
security reasons. Let’s assume that the troops all know about an upcoming offensive that will
involve an assault on the Hermes bridge that crosses the Muddy River. Develop an algorithm that
uses the StringTokenizer to examine each word of outgoing email. If any of the following words
are found, print the word REJECTED. If none are found, then print OK.

 Taboo words are: Hermes, bridge, Muddy, River, assault, and offensive

Call your class Censor and use the following sentences for testing.

“I hope I survive the assault tomorrow.”

“I want to talk to you about Bobby, but we’ll cross that bridge later.”

“Tell sis and Larry that I’ll be Ok and I will see them in 6 months”

“Your last letter was a little muddy on exactly what you meant.”

“I see no point in us trying to take the hermes crossing.”

Notice the last sentence uses “hermes” instead of “Hermes”. Your code should not be sensitive to
case and should reject this sentence.

You should input these sentences via the keyboard using the Scanner class. Your output screen
should look like the following after testing all the sentences:

Enter next sentence: I hope I survive the assault tomorrow.
I hope I survive the assault tomorrow.>>>REJECTED

Enter next sentence: I want to ask about Bobby, but we'll cross that
bridge later.
I want to ask about Bobby, but we'll cross that bridge
later.>>>REJECTED

Enter next sentence: Tell sis and Larry that I'll be ok and I will see
them in 6 months.
Tell sis and Larry that I'll be ok and I will see them in 6
months.>>>OK

Enter next sentence: Your last letter was a little muddy on exactly
what you meant.
Your last letter was a little muddy on exactly what you
meant.>>>REJECTED

Enter next sentence: I see no point in us trying to take the hermes
crossing.
I see no point in us trying to take the hermes crossing.>>>REJECTED

23-6

StringTokenizer… Contest Type Problems

1. What is output?

A. 54593
B. 54+593
C. 54+5=93
D. 59=93
E. None of these

import java.util.*;
public class MyTester
{
 public static void main(String args[]){
 int m=3, n=4, p=5;
 String s="5;4+5=9;3";
 StringTokenizer st=new StringTokenizer(s,";");
 while(st.hasMoreTokens())
 {
 System.out.print(st.nextToken());
 }
 }
}

2. What should be passed as a
parameter to the total method in order
for it to return a 17?

A. “11”
B. “3 8 0”
C. “7\n2 1\n1”
D. “15 –1 –2 –1”
E. All of the above

public static int total(String str) {
 StringTokenizer t = new StringTokenizer(str);
 int sum = 5;
 while(t.hasMoreTokens())
 {
 sum = sum+Integer.parseInt(t.nextToken());
 }
 return sum+1;
}

3. What is output?

A. 100.4
B. 101.4
C. 101.5
D. 102.5
E. None of these

import java.util.*;
public class MyTester
{
 public static void main(String args[]){
 double [] md = {100.3, 100.4, 100.5, 100.6};
 int k=0;
 String b = "0 1 2";
 StringTokenizer st=new StringTokenizer(b);
 while(st.hasMoreTokens())
 {
 String str = new String(st.nextToken());
 //System.out.println(str);
 double val = Double.parseDouble(str);
 ++k;
 md[k]+=val;
 }
 System.out.print(md[1]);
 }
}

23-7

4. What is output?

A. 6
B. 8
C. 2
D. Throws exception
E. None of these

import java.util.*;
public class MyTester {
 public static void main(String args[]){
 double [] md = {1, 2, 3, 4};
 int j;
 String b = "0 1 2";
 StringTokenizer st=new StringTokenizer(b);
 int k=st.countTokens();
 for(j=1; j<=k; j++) {
 double f=Double.parseDouble(st.nextToken());
 //System.out.println(j + " " + f + " " + md[j]);
 if(j%2==1){
 md[j]*=f;
 }
 else {
 md[j]/=f;
 }
 }
 System.out.println(md[j-1]);
 }
}

5. What is output?

A. Fourscoreandsevenyearsago
B. Four-scoreandsevenyears
C. Fourscoreandsevenyears
D. Fourscore and seven years ago
E. None of these

6. How would the output change if
the for-loop was changed to for(int
j=1;j<=5;j++)?

A. Throws an exception
B. No change
C. “ago” would be appended to

the end of the output.
D. Four-score would be omitted
E. None of these

String s = “Four-score and seven years ago”;
StringTokenizer st = new StringTokenizer(s, “ -”);
for(int j=0; j<5; j++)
 System.out.print(st.nextToken());

24-1

Lesson 24…..Input from a Disk File

Before we look at the code necessary to input data from a disk file, let’s first create a text file.
We will use a text editor for this purpose. Microsoft Notepad (preferred) or Microsoft WordPad
is recommended. Students sometimes have problems getting the proper extension for the file
name, etc., so it is recommended that we take a brief detour to Appendix E so as to avoid
problems in this area.

Create a file:

Create a text file called MyData.in. Store it in a folder specified by the following path
(unless directed otherwise by your instructor):
 C:\temp_Larry

It is assumed that your name is Larry and you have already created the folder,
temp_Larry.

 The contents of MyData.in should be as follows:
 One for all and all for one.
 Little House on the Prairie
 11 22 33 44 55 66 77 88 << notice the spaces between the numbers
 Sticks and stones

After the s in stones press the Enter key just once. If the programs that follow give a
NullPointerException, then first suspect the problem of “multiple Enters”.

Read the file:

We finally get down to business and begin writing a class called FileTester that will read
and display the contents of the file, MyData.in.

 import java.util.*;
 import java.io.*;

public class FileTester
{
 public static void main(String args[])
 {

 Scanner sf = new Scanner(new File("C:\\temp_Larry\\MyData.in"));
 … more code to come …
 sf.close(); //We opened a file above so close it when finished.

}
}

To read the file, we need to create a Scanner object, and this necessitates the import of
java.util.* (package name is java.util…see Appendix I for more on packages). File
requires the import of java.io.*. In the above code it is the object sf that will be used to
input data from the file.

Notice in C:\\temp_Larry\\MyData.in the use of the double back-slashes. Recall that \\ is
the escape sequence for the back-slash character. Otherwise, if we had specified
C:\temp_Larry\MyData.in the \t would have been interpreted as the escape sequence for a
tab …. and \M would have been interpreted as yet another escape sequence.

24-2
Won’t compile:

Unfortunately, this code won’t even compile. The File object is capable of producing
errors beyond our control. For example, suppose the file doesn’t exist or is corrupted.
What if we try to do successive inputs beyond the end of the file? These would all
produce errors (exceptions). To correctly allow for these errors, we need to change the
signature of the main method as follows:

 public static void main(String args[]) throws IOException

This throws IOException is very mysterious right now. In a later lesson we will learn all
about exceptions. For now, we simply accept by faith that throws IOException needs to
be there in case of a file error…. If you are incurably curious and need to know, we can
tell you briefly that for a method that is capable of throwing a checked exception (of
which, IOException is a classic example) you can either handle the error in your code
with try, catch, and finally…or you can defer the response to the error up the calling
chain with throws IOException. Incidentally, the IOException class also requires the
importing of the java.io.* package.

At this point your FileTester class should compile successfully.

We will now add some more code that will actually bring in the data from the MyData.in file one
line at a time. We will use a while loop to do this, and inside the loop on each iteration we will
assign the lines in the text file to the String array, text[]. When finished with the loop, we should
find that we have four array values as follows:

 text[0] = “One for all and all for one.”
 text[1] = “Little House on the Prairie”

text[2] = “11 22 33 44 55 66 77 88”
text[3] = “Sticks and stones”

The amended class:
 import java.io.*; // necessary File and IOException
 import java.util.*; // necessary for Scanner

public class FileTester
{
 public static void main(String args[]) throws IOException
 {

 Scanner sf = new Scanner(new File("C:\\temp_Larry\\MyData.in"));

 int maxIndx = -1; //-1 so when we increment below, first index is 0
 String text[] = new String[100]; //to be safe, declare more than we need

 while(sf.hasNext())

{
 maxIndx++;
 text[maxIndx] = sf.nextLine() ;
 }

//maxIndx is now the highest index of text[], -1 if no text lines
 sf.close(); //We opened a file above so close it when finished.

}
}

24-3

One line at a time:

A little explanation is in order. The most critical line above is text[maxIndx] =
sf.nextLine(). This is where we pull an entire line in from the disk file. The control part
of the while-loop, sf.hasNext(), lets us gracefully end the loop after all lines have been
input.

The final version:

This is all well and good, but how do we know if it really worked? After the sf.close()
statement above, let’s add a loop to cycle through all the appropriate text[] values and
print them out. The final class is:

 import java.io.*; // necessary for File and IOException
 import java.util.*; // necessary for Scanner

public class FileTester
{
 public static void main(String args[]) throws IOException
 {

 Scanner sf = new Scanner(new File("C:\\temp_Larry\\MyData.in"));

 int maxIndx = -1; //-1 so when we increment below, first indx is 0
 String text[] = new String[100]; //to be safe, declare plenty

 while(sf.hasNext())

{
 maxIndx++;
 text[maxIndx] = sf.nextLine() ;
 }

//maxIndx is now the highest index of text[], -1 if no text lines
 sf.close(); //We opened a file above so close it when finished.

for(int j = 0; j <= maxIndx; j++)
{
 System.out.println(text[j]);
}

}
}

The final output:

After running this program, your printout should look like this:

One for all and all for one.
 Little House on the Prairie
 11 22 33 44 55 66 77 88
 Sticks and stones

24-4

Exercise on Lesson 24

Unless otherwise indicated, the following questions refer to the final FileTester class on the
previous page.

1. Create a Scanner object called scr suitable for reading in the file DaffyDuck.txt. This file
resides in the C:\Disney\Cartoons folder.

2. Consider the code fragments:
maxIndx++;
text[maxIndx] = sf.nextLine();

 Which of the following could replace this code?
a. text[++maxIndx] = sf.nextLine();
b. text[maxIndx++] = sf.nextLine();
c. text[maxIndx] = sf.nextLine();
d. None of these

3. Write an expression that tells the number of elements in the text[] array (after exiting the
loop) that contain meaningful data.

4. Why do we initialize maxIndx with a value of –1?

5. What are the conditions for exiting the while loop?

6. The Scanner class requires what import?

7. Rewrite the while loop so that it prints each line of input from the file just after it’s stored

in the text[] array.

8. What would be the value of maxIndx (at the completion of the while loop) if the
MyData.in file was completely empty?

9. What does sf.close() accomplish?

10. With the statement String text[] = new String[100]; why do we dimension text[]
so large?

11. What might account for the following?

24-5

You used Notepad to create a file and thought you named it Dat.xx. Later when
you look in the folder (in which it resides) with Windows Explorer, you notice
that the file name is actually Dat.xx.txt.

12. Write the signature of the nextLine method.

Project… Reading Files

Write a class called FileNerd that will input the lines of text from a file named NerdData.txt that
is stored in the C:\temp_Larry folder (assuming your name is Larry). After the file input loop,
create a loop in which you printout only those lines that begin with the word “The”.

The contents of NerdData.txt are: Output will look like this:
 Every man tries as hard as he can. The best way is this way.
 The best way is this way. The schedule is very good.
 The schedule is very good. The best movie was cancelled.
 Cosmo Kramer is a doofus.
 The best movie was cancelled.

Warning:
Now that we know how to input files there is a danger of bringing a virus into our computers.
See Appendix T for a discussion on viruses and how to protect against them.

25-1

Lesson 25…..Processing File Input with Scanner

We are going to illustrate the use of the Scanner class with lines of text that we input from a file.
First, we will look at how to process numbers that are embedded in the text that makes up the
various lines of an ASCII text file.

Suppose we consider text files with the following properties:

1. They will have an unknown number of lines of text.
2. Each line of text consists of an unknown number of integers separated by spaces.

Following is an example of the contents of such a file (NumData.in stored in your standard
temp_Name folder):

 12 10 3 5
 18 1 5 92 6 8
 2 9 3 22 4 11 7

Adapting to unpredictability:

When we write our program, we want to remember that this file has elements of
unpredictability. There are an unpredictable number of lines of text. Furthermore, each
line of text contains an unpredictable number of integers.

Here is our task. We are to input the lines of text and then print the sum of the numbers in
each line. For example, the sum of the numbers in the first line is:

 12 + 10 + 3 + 5 = 30

Similarly, the other lines of text yield:

 18 + 1 + 5 + 92 + 6 + 8 = 130
 2 + 9 + 3 + 22 + 4 + 11 + 7 = 58

We are required to process the data in such a way that the final printout appears as
follows:
 12 + 10 + 3 + 5 = 30
 18 + 1 + 5 + 92 + 6 + 8 = 130
 2 + 9 + 3 + 22 + 4 + 11 + 7 = 58

Begin the new class:

Let’s begin our new InputNumData class as follows:

import java.io.*; //necessary for File and IOException
import java.util.*; //necessary for Scanner
public class InputNumData
{
 public static void main(String args[]) throws IOException
 {
 Scanner sf = new Scanner(new File("C:\\temp_Name\\NumData.in"));
 int maxIndx = -1; //-1 so when we increment below, the first index is 0

25-2

 String text[] = new String[100]; //To be safe, declare more than we need
 while(sf.hasNext())
 {
 maxIndx++;
 text[maxIndx] = sf.nextLine();
 //System.out.println(text[maxIndx]); //Remove rem for testing
 }

 //maxIndx is now the highest index of text[], -1 if no text lines
 sf.close(); //We opened a file above, so close it when finished.

…process the text[] array…
 }

}

Notice that the while-loop automatically adjusts to an unpredictable number of lines of
text. We exit the loop with the lines of text stored in text[] and with maxIndx being the
highest index.

Processing the text:

Our real job here is to fill in code in the area of …process the text[] array…. To do this,
we will set up a loop to process the text[] elements. As the first line inside the loop, we
will create another Scanner object where text[j] is the String to be tokenized (parsed).

 for(int j =0; j <= maxIndx; j++)
 {
 Scanner sc = new Scanner(text[j]);
 //Notice we create a new object each time through the loop

 . . .
 }

Now, we will adjust to the unpredictable number of integers in each line of text by using
a while loop and the Scanner method hasNext() as follows:

 String answer = “”; //We will accumulate the answer string here.
 int sum; //accumulates sum of integers
 for(int j =0; j <= maxIndx; j++)
 {
 Scanner sc = new Scanner(text[j]);
 sum = 0; //important to set to 0; otherwise it will remember the last sum
 answer = “”; //otherwise it will remember last answer String

 while(sc.hasNext()) //We could also have used hasNextInt() here
 {
 int i = sc.nextInt();
 answer = answer + “ + ” + i;
 sum = sum + i;
 }
 answer = answer + “ = ” + sum;
 System.out.println(answer);
 }

25-3

As we learned in Lesson 7, use of the Scanner class necessitates the import of java.util.*.

The resulting printout:

 + 12 + 10 + 3 + 5 = 30
 + 18 + 1 + 5 + 92 + 6 + 8 = 130
 + 2 + 9 + 3 + 22 + 4 + 11 + 7 = 58

Project… Get Rid of That Leading Plus Sign!
The above is fairly close to what we want except that we have a leading “ + ” to eliminate from
each line. This is left as an exercise for the student.

A more complex task:

For our next application of file input using Scanner, we will consider lines of pure
alphabetical characters. The text file we will use will be called Names.in and will be
stored on a floppy. The path to the floppy will be “A:\Names.in”. (Your instructor may
have you put the file on your hard drive if you do not have a functioning floppy drive.)

The contents of this file will be: Output will be:
Sally Jones Bush, Laura
Laura Bush Ellison, Judy
Charlene Tilton Garza, Felecia
Marilyn Monroe Jones, Sally
Judy Ellison Monroe, Marilyn
Felecia Garza Perez, Minerva
Minerva Perez Tilton, Charlene

There are two things required of the output that we observe above.

1. The names have been reversed with the last name occurring first followed by a
comma and then the first name.

2. The reversed names are listed in alphabetical order.

Reversing the names:
We will call our class AlphNames; however, for now we will skip immediately to the
code that follows the while-loop that inputs the lines of text from the file into the array,
text[]. Our code begins with the assumption that we have the following:
 text[0] = “Sally Jones”
 text[1] = “Laura Bush”
 . . .

The first thing we will do is produce a new unsorted array reversedName[] that will
appear as follows:
 reversedName[0] = “Jones, Sally”
 reversedName[1] = “Bush, Laura”
 . . .

25-4
Here is the code that will accomplish all this:

 String reversedName[] = new String[maxIndx + 1];
 for (int j = 0; j <= maxIndx; j++)
 {
 Scanner sc = new Scanner(text[j]);

 String firstName = sc.next();
 String lastName = sc.next();
 reversedName[j] = lastName + “, ” + firstName;
 }

Sorting the new array:

Finally, we need a way to sort the array, reversedName[]. Recall from Lesson 19 that it’s
done like this: (The for-loop prints the sorted array.)

 Arrays.sort(reversedName); //requires import java.util.*
 for (int j =0; j <= maxIndx; j++)
 {
 System.out.println(reversedName[j]);

}

Finally, the entire class is as follows:

import java.io.*; //for File and IOException
 import java.util.*; //necessary for Arrays.sort() and Scanner

public class AlphNames
{
 public static void main(String args[]) throws IOException
 {

 Scanner sf = new Scanner(new File("A:\\Names.in"));

 int maxIndx = -1; //-1 so when we increment below, the first index is 0
 String text[] = new String[100]; //to be safe, declare more than we need

 while(sf.hasNext())
 {
 maxIndx++;
 text[maxIndx] = sf.nextLine();
 }

//maxIndx is now the highest index of text[], = -1 if no text lines
 sf.close(); //We opened a file above, so close it when finished.

 String reversedName[] = new String[maxIndx + 1];
 for (int j = 0; j <= maxIndx; j++)
 {
 Scanner sc = new Scanner(text[j]);

 String firstName = sc.next();
 String lastName = sc.next();
 reversedName[j] = lastName + “, ” + firstName;
 }

25-5

Arrays.sort(reversedName);
 for (int j =0; j <= maxIndx; j++)
 {
 System.out.println(reversedName[j]);

}
 }

}

Project… Student Averages

Create the following text file called StudentScores.in and store in your standard folder
(temp_Name).

 File contents: Program output:
 Agnes 56 82 95 100 68 52 Agnes, average = 76
 Bufford 87 92 97 100 96 85 93 77 98 86 Bufford, average = 91
 Julie 99 100 100 89 96 100 92 99 68 Julie, average = 94
 Alice 40 36 85 16 0 22 72 Alice, average = 39
 Bobby 100 98 92 86 88 Bobby, average = 93

Each line of the file consists of a student’s name followed by an unpredictable number of test
scores. The number of students is also unpredictable. The desired output is as shown where the
numbers there represent the average test score rounded to the nearest whole number.

Create a class called StudentAverages that will input the StudentScores.in text file and produce
the indicated output.

26-1

Lesson 26…..Writing to a Text File

Making preparations:

Writing to a text file is very simple. We will again need to do two things we are already
accustomed to doing when reading text files:

1. java.io.* must be imported.

2. Use throws IOException as part of the signature of the method containing our file

output code.

Create FileWriter and PrintWriter objects:

FileWriter fw = new FileWriter(“C:\\temp_Name\\Output1.out”);
Notice here that we specify the name of the file we wish to create. This object
sends one character at a time to the file. This could be a bit inconvenient. For
example, if we need to output “Hello good buddy”, we would need to output all
16 characters separately.

PrintWriter output = new PrintWriter(fw);

This final object, output, permits us to use a single command to write entire
sentences (or numbers) to the file. This PrintWriter class has two methods of
which we need to be aware.

a. print()
b. println()

print() and println() are used in exactly the same way in which they are used
with System.out.

Complete class in which we write to a file:

 import java.io.*;
 public class WriteToFile
 {
 public static void main(String args[]) throws IOException
 {
 FileWriter fw = new FileWriter(“C:\\temp_Name\\Output1.out”);
 PrintWriter output = new PrintWriter(fw);

 output.print(“Four-score and ”);
 double d = 7.023;
 output.println(d);
 output.println(“years ago.”);

 output.close(); //These two lines are very important. Some of the data
 fw.close(); //may not actually be put on disk until you close.
 }

}

Load Notepad and look at the file Output1.out. The following is what you should see.

26-2

Four-score and 7.023
years ago.

Project…. Write Student Averages

Modify the project (Determining Student Averages) from Lesson 25 so that it will print the
output to a file rather than a console screen. Your output file should be stored in your standard
folder, temp_Name and the file name should be StudentScores.out. At the completion of the
program, the contents of StudentScores.out should be:

 Agnes, average = 76
 Bufford, average = 91
 Julie, average = 94
 Alice, average = 39
 Bobby, average = 93

Call this new class StudentAverages_Out.

**

Appending to a file:

Occasionally it may be desirable to append new content to the end of an existing file
rather that overwriting it as is the case with all of the previous code in this lesson. To
accomplish this, just make the following modification to the creation of the FileWriter
object:

 FileWriter fw = new FileWriter(“C:\\temp_Name\\Output1.out”, true);

The new parameter, true, simply says, “Yes, we want to append.” If the file does not
already exist, the “append mode” will create and write to it.

Flushing the buffer:
The PrintWriter constructor will also accept a second parameter that indicates if we wish
to flush the buffer after each println. This forces storage to the disk at that moment
rather than waiting for the close method. This second parameter is not necessary if the
close method is issued at the end of output to the disk. The syntax for this is:

PrintWriter output = new PrintWriter(fw, true);

As an enrichment activity, take a look at Appendix F. There, you will learn the difference
between text and binary files.

27-1

Lesson 27…. Formatting (rounding-off)

One method of rounding off is to use the NumberFormat (requires import java.text.*;) class to
create a String, and then convert that String back into the desired primitive number type.

A “rounding-off” example:

For example, to round 34.982665 to the nearest thousandths:

 double d = 34.982665;

 NumberFormat fmt = NumberFormat.getNumberInstance();
 fmt.setMaximumFractionDigits(3);
 fmt.setMinimumFractionDigits(3);

 String s = fmt.format(d);
 System.out.println(s); //34.983
 double d3 = Double.parseDouble(s); //Convert to a double for demo purposes
 System.out.println(d3); //34.983 …Perfect, just the answer we expected!

Analyzing the details:
Let’s examine four important details about the above code:

1. fmt.setMaximumFractionDigits(3) gives us no more than 3 decimal places… i.e.
it rounds off to 3 decimal places.

2. fmt.setMinimumFractionDigits(3) guarantees at least 3 decimal places. For

example, if we round off 34.9997 to 3 decimal places we would ordinarily get
35.0; however, with setMinimumFractionDigits(3) we would get 35.000.

3. fmt.format(d) returns a String, not a numeric.

4. You may ultimately want a numeric instead of a String, hence the

Double.parseDouble(s) part of the code.

More NumberFormat objects:

Notice above that the way we create a NumberFormat object is by calling the
getNumberInstance static method. It returns a NumberFormat object. There are two other
similar methods that return NumberFormat objects. These are detailed below along with
sample usage.

1. The object returned by getCurrencyInstance is used for formatting money.

NumberFormat nf = NumberFormat.getCurrencyInstance();
String str = nf.format(81.09745);
System.out.println(str); //$81.10

str = nf.format(.358);
System.out.println(str); //$.36

27-2

2. The object returned by getPercentInstance is used for formatting percents. The
number to be formatted is multiplied by 100 and then a percent sign is appended.
The settings determined by setMinimumFractionDigits() and
setMaximumFractionDigits() are applied after multiplication by 100. If these
methods are not specifically called, then their settings are automatically 0.

NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMinimumFractionDigits(2);
nf.setMaximumFractionDigits(2);
String str = nf.format(.35838);
System.out.println(str); //35.84%

For even more formatting flexibility use the DecimalFormat class. Its usage is detailed in
Appendix Z. There, you will learn, for example, to specify a pattern like “#,###.000”, and then
format a number like 3847.2 as 3,847.200.

The Formatter Class:

The Formatter class (new to Java 5.0) is used to format numbers (and other data, too) and
to produce Strings containing the formatted data. Begin the process by creating a
Formatter object:

Formatter fmt = new Formatter();

Actual formatting is done with the format method. It has several parameters, the first of
which is a String with embedded format llowed by a corresponding
sequence of data to be formatted. The seq specifiers matches the
sequence of data parameters as illustrate

fmt.format(“My number>>>%f, a

Finally, produce the formatted String wit

 My number>>>237.647000,

In this example we formatted a floating-p
See Appendix AD for other format speci

Minimum Field Width:

The output above is especially useful wh
next example where we allocate a width
characters to the String. Each field is pad
specified number of characters. If the Str
still be printed in its entirety.

fmt.format(“M >>%15

 specifiers. This is fo
uence of embedded
d by the following example:

nd my string>>>%

%f means floating po

h fmt.toString() an

 and my stri

oint number using
fiers.

en we are able to s
of 15 characters to
ded with spaces to
ing or number is lo

f, and my string>>
int
s”, 237.647, “hello”);

%s means String

d get:

ng>>>hello

 %f and a String using %s.

pecify a field width as in the
 the number and a width of 8
 insure it occupies the
nger than the setting, it will

>%8s”, hello”);
y number>
 237.647, “

27-3

A subsequent application of fmt.toString() will yield (notice the padding with spaces):

My number>>> 237.647000, and my string>>> hello
8 characters15 characters

The ability to set field widths is especially useful in the printing of tables since it helps
keep columns aligned.

Precision:
Next, we examine the notion of precision (typically, the number of decimal places). The
precision specifier follows the minimum field width specifier (if there is one) and
consists of a period followed by an integer. It can be applied to %f, %e, %g, or %s. The
default precision for numerics is 6 decimal places.

The following examples show how to use the precision specifier:

1. Example 1… %9.3f… a decimal floating point number in a field 9 characters
wide and having 3 decimal places… 187.9207 formats as “ 187.921”

2. Example 2… %9.2e… a scientific notation number in a field 9 characters wide

and having 2 decimal places… 46238.123 formats as “ 4.62e+04”

3. Example 3… %.4g… either a decimal floating number or scientific notation
(whichever is shorter) having no minimum field width and having 4 significant
digits…. 187.0853211 formats as “187.1”

4. Example 4… %6.8s… displays a String of at least 6 but not exceeding 8

characters long. If the String is longer than the maximum, characters toward the
end of the String will be truncated… “abc” formats as “ abc”;
“123456789A” formats as “12345678”

Format Flags:

It is possible to use special format flags to control various aspects of formatting. These
flags immediately follow the %. Some of the more often used flags are detailed here (see
Appendix AD for a more complete list):

• - Left justification… %-9.2f… 72.45822 formats as “72.46 ”

• 0 Pad with zeros instead of the default spaces… %09.2f… 72.45822 formats as

“000072.46”

• , Numeric values include grouping separators… %-,10.2f…1726.46 formats as
“1,726.46 ”

It is possible to pass a Formatter object as an argument to the println method where its
toString method is automatically called with System.out.println(fmt);

An even handier shortcut is to dispense with the Formatter object entirely and use the
printf method (new to Java 5.0). The parameters in the example below are exactly the
same as for Formatter.

27-4

System.out.printf(“One number, %0,10.2f, followed by another, %-9e, %s”,
1267.657, 56.71, “number.”);

The output is:

 One number, 001,267.66, followed by another, 5.671000e+01, number.

Exercise on Lesson 27

1. Using the NumberFormat class, write code that will create a double called cv, assign it a
value of 18.7713, and then convert it to a String rounded off to the nearest hundredth.
Assure that at least 1 decimal place is printed. Print the String.

2. What type variable is returned by the format method of the NumberFormat class?

3. Using the NumberFormat class, write code that will create a double called dv, assign it a

value of 184.767123, and then convert it to a String rounded off to the nearest
thousandth. Assure that at least 2 decimal places are printed.

4. Using the NumberFormat class, write code that will input a double called db from the
keyboard and then convert it to a String in which there are at least 3 decimal places… and
at most 4.

5. Assume you already have a floating type variable mn that you want to display as dollars
and cents (example, $127.15). Using the NumberFormat class, write code that will
produce such a printout (including the dollar sign).

6. What import does the NumberFormat class require?

7. What is the output of the following code?
NumberFormat nf = NumberFormat.getCurrencyInstance();
System.out.println(nf.format(487.0871));

8. What is the output of the following code?

NumberFormat nf = NumberFormat.getPercentInstance();
nf.setMinimumFractionDigits(3);
nf.setMaximumFractionDigits(3);
String str = nf.format(4.708832);
System.out.println(str);

27-5

9. What class lets you specify patterns like “0,000,000.##” in determining the formatting of
a number?

10. In calling the getNumberInstance() method of the NumberFormat class, why do we have
to preface it with NumberFormat as in NumberFormat.getNumberInstance()?

11. What is printed by the following code? Indicate each space (if any) with a tilde(~).
Formatter fmt = new Formatter();
fmt.format(“%s--->%-,10.3f--->%08.1e”, “Formatting example”, 189.11081, .07642);
System.out.println(fmt);

12. Suppose you have a Formatter object called f. Write code that will use f to produce

String s having double d left justified in a field 12 characters wide and rounded to 4
decimal places.

13. Suppose you have a Formatter object called f. Write code that will use f to produce
String s having int i left justified in a field 11 characters wide. Use comma separators.

14. What is output by the following code? Indicate each space (if any) with a tilde(~).
System.out.printf(“--->|%3.6s|<---”, “x”);

15. Suppose you need to produce a table that looks like the following:
57012 $1,200,586.22
00026 $ 187.91
00729 $ 571,267.03

 Here is a code fragment that produces this table:
 for(int j = 0; j < 3; j++)
 System.out.printf(“???????”, num[j], money[j]);

Supply the correct syntax for “???????” so that the table is correctly produced with 13
spaces between the two columns. The num array is an int array and money is a double
array.

16. What does the following print?
Formatter fmt = new Formatter();
int i = 4893;
fmt.format(“start%012dend”,i);
String s = fmt.toString();
System.out.println(s);

27-6

Project… BaseClass (Shell)

We will create a generic class (sometimes called a shell) for reading/processing files that also
includes a NumberFormat object as well as StringTokenizer and Scanner objects. We will call
this class BaseClass and every time we have a programming project that requires file input, we
will begin by simply pasting in this code. We would then change the name of the class from
BaseClass to whatever the new class name is to be and finally, lay in the additional code to
accomplish the task at hand.

import java.io.*; //necessary for File and IOException
import java.util.*; //necessary for StringTokenizer and Scanner
import java.text.*; //necessary for NumberFormat
public class BaseClass
{
 public static void main(String args[]) throws IOException
 {
 NumberFormat fmt = NumberFormat.getNumberInstance();
 fmt.setMinimumFractionDigits(3); //may need to change value
 fmt.setMaximumFractionDigits(3); //may need to change value

 Scanner sf = new Scanner(new File("c:\\temp_Name\\FileName.in"));
 int maxIndx = -1; //-1 so when we increment below, the first index is 0
 String text[] = new String[100]; //To be safe, declare more than we need
 while(sf.hasNext())
 {
 maxIndx++;
 text[maxIndx] = sf.nextLine();
 //System.out.println(text[maxIndx]); //Remove rem for testing
 }
 //maxIndx is now the highest index of text[]. Equals -1 if no text lines
 sf.close(); //We opened a file above, so close it when finished.
 //System.exit(0); //Use this for testing… to temporarily end the program here

 for (int j = 0; j <= maxIndx; j++)
 {
 //Typically, only one of the following two will be used.
 //StringTokenizer st = new StringTokenizer(text[j]);
 //Scanner sc = new Scanner(text[j]);

 //…code specific to the task…

 //System.out.println(text[j]); //Remove rem for testing
 }
 }
}

27-7

Project… Gymnastics

Use your new BaseClass class to implement the following project. Call the new class Gym:

Ten people are judging an international gymnastics competition. Each judge gives a contestant a
performance score between 0.0 and 10.0, inclusive, with the score given to one decimal place.
Since some judges favor their own country’s competitors and/or give lower scores than deserved
to their country’s rivals, the highest and lowest scores are discarded before averaging the eight
other scores. Write a program that will read in the judges’ ten scores, discard the highest and
lowest score, and compute the average of the eight other scores to four decimal places.

Input
Read in one or more data sets (assume you don’t know ahead of time how many) of 10 scores
from the file DataGym.in. Each data set will use exactly one line of the input text file. There will
be ten floating point numbers (each separated from the others by spaces) between 0.0 and 10.0,
inclusive (to one decimal place) on each line of the file.

 Input file

8.7 6.5 0.1 3.2 5.7 9.9 8.3 6.5 6.5 1.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Output
Print, for each data set that is input, the average to four decimal places. This average should be
preceded each time by “For Competitor #X, the average score is ”, where X denotes the
competitor’s position (starting with 1) in the input file.

 Output to screen for above input file
 For Competitor #1, the average is 5.8625
 For Competitor #2, the average is 0.0000
 For Competitor #3, the average is 1.0000

On the next page is a flowchart that shows the flow of the logic involved in solving this problem.
Notice two nested loops whose starting points are depicted with diamonds. Typically, diamonds
are used for decisions (if statements); however, they are used here to depict the decisions of
whether to stay in the loops or not.

On highly complex problems it is common practice to begin program design with a flow chart.
The gymnastics program is not a very complicated program; however, most students find the
flowchart a significant aid on this problem.

The teacher’s answer key shows two solutions to this problem, the first of which follows the
flow chart exactly. The second solution uses a completely different approach.

27-8

yes

end

Cycled thru
all text[]

items yet?

 Fig. 27-1 Flow chart
 the input fil
no
yes

no Cycled thru
10 times

yet?

Use either Tokenizer or
Scanner for this.

Tokenize line of text

Get next token

Convert to double

Order array

Sum all items
in array except
first and last

Add to an array

for gym
e have
Calculate and
print score
nastics project. This assumes the lines of text from
already been stored in the text[] array.

28-1

Lesson 28…..Bitwise Operators

Just as we can AND and OR boolean quantities we can also AND and OR numbers. This is
called bitwise AND-ing and OR-ing, whereas the boolean symbols are && and ||, their bitwise
counterparts are denoted by & and |. (It turns out that there are some other bitwise operations
too.) Here are the bitwise binary operators and their rules (using only 1’s and 0’s):

Bitwise-AND, & (Notice we must have all 1’s to yield a 1.)
 0 1 1
 0 0 1

answer 0 answer 0 answer 1

Bitwise-OR, | (Notice if we have at least one 1, it yields a 1.)
 0 1 1
 0 0 1

answer 0 answer 1 answer 1

Bitwise-exclusive-OR (also called XOR) ^ (Same as bitwise-OR except all 1’s yields a 0)
 0 1 1

 0 0 1
answer 0 answer 1 answer 0

Bitwise-NOT (also called inverting) ~
In the binary representation of a number, all bits with a value of 1 are turned into
0’s, and all bits with a value of 0 are turned into 1’s.

Bitwise-AND example, & :

System.out.println((90) & (107)); //74

 90 dec = 0101 1010 bin

107 dec = 0110 1011 bin

 0100 1010 bin = 74 dec

Bitwise-OR example, | :

System.out.println((90) | (107)); //123

 90 dec = 0101 1010 bin

 107 dec = 0110 1011 bin

 0111 1011 bin = 123 dec

28-2

Bitwise-exclusive-OR examples, ^ :

System.out.println((90) ^ (107)); //49

 90 dec = 0101 1010 bin

 107 dec = 0110 1011 bin

 0011 0001 bin = 49 dec

Now let’s think of the exclusive-OR problem 0x4BA ^ 0x132

Let’s break up each into its binary form.

 0x4BA = 0100 1011 1010 0x132 = 0001 0011 0010
 4 B A 1 3 2

Stack them and do an exclusive-OR remembering that two 1’s yields a 0.

0x4BA = 0100 1011 1010
 0x132 = 0001 0011 0010

 0101 1000 1000 = 1416dec = 0x588, the answer
 5 8 8

Bitwise-NOT example, ~ :

int zx = 46; // 010 1110 bin

System.out.println(~ zx); // -47

Why does this print a negative number? The positive integer (four bytes), 46, is
represented in binary as follows:
 00000000 00000000 00000000 00101110
 |
 This most significant bit (msb) is the “sign-bit”. An msb value of 0 means

the number is positive while 1 would mean it’s negative.

 The NOT (~) operation changes all 1’s to 0’s and vice versa, so we get:

 11111111 11111111 11111111 11010001
 |
 Clearly, the sign bit, 1, is now representing a negative number.

It is beyond us at the present to understand what the value of this negative number
might be. This negative number is represented in “two’s complement notation”. This is a
topic for the advanced student and is presented in Appendix G.

 For now it is enough for us just to know that ~(positive integer) yields a negative
integer and that ~(negative integer) yields a positive integer.

28-3

Exercise on Lesson 28

1. What is the bitwise operator for AND?

2. What is the boolean operator for AND?

3. What is the bitwise operator for OR?

4. What is the boolean operator for OR?

5. What is the bitwise operator for exclusive-OR?

6. What is the bitwise operator for NOT?

7. What is the boolean operator for NOT?

Use the following code to tell what’s printed in problems 8 – 18. (The code in some problems
may not compile. If that’s the case then state, “Won’t compile.”)
 int j = 79, k = 82, p = 112, q = 99;

8. System.out.println((137) | q);

9. System.out.println((137) & (121));

10. System.out.println((137) && (0x3A));

11. System.out.println((137) ^ (121));

12. System.out.println((p) | (j));

13. System.out.println(~ 465);

14. System.out.println(j ^ (0x4B));

15. System.out.println((j) & (k));

16. System.out.println(p || j);

17. System.out.println(p ^ q);

18. System.out.println(~ (-k));

19. What does msb stand for?

20. What do you get if you bitwise-exclusive-OR two 1’s?

21. What can be said about an integer if its most significant bit is 1?

22. An integer’s msb is 1. If this integer is multiplied by –27 what will be the resulting sign?

28-4

Project… Masking Telemetry Data

In a telemetry system in a spacecraft each bit position within the first eight bits of an integer
sent to ground control have meaning with regard to the status of certain switches onboard the
spacecraft. Assuming a 1 indicates the switch is on and a 0 indicates that it’s off, these
meanings are illustrated below:

1 0 1 1 0 0 0 1 = 177dec

Switch sw56 is “on”
Switch sw57 is “off”
Switch sw58 is “off”
Switch sw59 is “off”
Switch sw60 is “on”
Switch sw61 is “on”
Switch sw62 is “off”
Switch sw63 is “on”

The numbers sent to ground control never exceeds 255 (first eight bits all set to 1).
Suppose we wish to look at the third bit from the left. Use a mask as illustrated below to
bitwise AND with the original number in order to look only at the third bit.

 1 0 1 1 0 0 0 1bin = 177dec

 0 0 1 0 0 0 0 0bin = 32dec (this is the mask)
 0 0 1 0 0 0 0 0bin = 32dec = (177 & 32)

Notice this scheme of bitwise AND-ing a mask value of 32 (25, since the third bit position
from the left has a positional value of 25) yields a value in the third bit position exactly equal
to the third bit position of the original number. All other bit positions are guaranteed to be
0’s. Thus, this result of bitwise AND-ing can be tested to see if its entire value is 0. If it’s
greater than 0, this means that the bit in the tested position was a 1.

Write a program that will input the following data file, Switches.in, containing decimal
numbers that represents successive switch information telemetry. Print the status of all eight
switches.

 Switches.in
 22
 194
 203
 97

Your output should be as shown on the next page:

28-5

Switch status for data value 22:
 Switch sw56 is "off"
 Switch sw57 is "on"
 Switch sw58 is "on"
 Switch sw59 is "off"
 Switch sw60 is "on"
 Switch sw61 is "off"
 Switch sw62 is "off"
 Switch sw63 is "off"

Switch status for data value 194:
 Switch sw56 is "off"
 Switch sw57 is "on"
 Switch sw58 is "off"
 Switch sw59 is "off"
 Switch sw60 is "off"
 Switch sw61 is "off"
 Switch sw62 is "on"
 Switch sw63 is "on"

Switch status for data value 203:
 Switch sw56 is "on"
 Switch sw57 is "on"
 Switch sw58 is "off"
 Switch sw59 is "on"
 Switch sw60 is "off"
 Switch sw61 is "off"
 Switch sw62 is "on"
 Switch sw63 is "on"

Switch status for data value 97:
 Switch sw56 is "on"
 Switch sw57 is "off"
 Switch sw58 is "off"
 Switch sw59 is "off"
 Switch sw60 is "off"
 Switch sw61 is "on"
 Switch sw62 is "on"
 Switch sw63 is "off"

29-1

Lesson 29…..Advanced Bitwise Operations

Decimal shifting:

We will briefly discuss shifting by considering the decimal number 283.0. If we hold the
decimal place fixed and shift all numbers to the right we get:

 28.3

Thus, we see shifting a decimal number to the right is equivalent to dividing by 10 (the
base of the decimal system). If we take the same number and shift to the left we get:

 2830.0

Thus, we see shifting a decimal number to the left is equivalent to multiplying by 10.

Binary shifting:

We can apply this same principle to the binary system with the following two rules:

1. Shifting a binary number to the right is equivalent to dividing by 2.

2. Shifting a binary number to the left is equivalent to multiplying by 2.

Bitwise shift left (sign is preserved), << :
 System.out.println(7 << 3); // 56

 7 is the number we will be shifting to the left. We are to shift 3 times. Since each shift to

the left is equivalent to a multiplication by 2, then 3 shifts is 2 * 2 * 2 = 23 = 8. So, the
problem 7 << 3 is really 7 * 8 = 56.

System.out.println(-7 << 3); // -7 * 8 = -56 Notice the sign is preserved

Bitwise shift right (sign is preserved), >> :
 System.out.println(32 >> 3); // 4

32 is the number we will be shifting to the right. We are to shift 3 times. Since each shift
to the right is equivalent to a division by 2, then 3 shifts is really dividing by 2 * 2 * 2 =
23 = 8. So, the problem 32 >> 3 is really 32 / 8 = 4.

System.out.println(-32 >> 3); // -4 Notice the sign is preserved
System.out.println(35 >> 3); // 4 Notice fractional part disappears since we are dealing
 // with integers.

Bitwise shift right (sign is not preserved), >>> :

System.out.println(-16 >>> 3); // 536870910

Think of this number (-16) as a long series of 1’s and 0’s. We know that the msb (most
significant bit) will be a 1 since it’s negative. When shifted right the msb is vacated and a
0 always takes its place. That’s why it turns into a positive number.

29-2

Don’t worry about the actual number we get as an answer for this last example. It’s
enough just to know it’s positive.

System.out.println(16 >>> 3); // 2

What does it mean?
Now we are going to show something really weird. If bitwise AND-ing and OR-ing is
done on numbers, and boolean AND-ing and OR-ing is done on boolean quantities (true
or false), then we would guess that the following would be illegal:

 System.out.println((y = = z) & (z > p)); //try to bitwise-AND two booleans

That guess would be wrong! It is legal, so what could it mean to bitwise-AND two
boolean quantities? After all, booleans are not numbers that have “bits”, so how can we
do bitwise operations on them? To answer that we must go back to boolean operations
and discuss a subject called “short circuiting”.

Short-Circuiting

 Consider the following program fragment:
 int j = 34;
 int p = 0;
 if ((p > 2) && (++j = =19))
 {
 …some code…
 }

System.out.println(j);

What do you think would be printed? 35? Actually, 34 is printed. Here’s what happens.
The boolean quantity (p> 2) is evaluated to be false. Java is wise enough to know that
since the first parenthesis is false, there is no point in continuing with the AND (&&)
evaluation. Regardless of what the second parenthesis, (++j = =19), evaluates to be, the
entire AND must come out false.

Therefore, for the sake of time efficiency, “short-circuiting” takes place and the second
parenthesis is never executed. Hence, the ++j never gets a chance to increment j. This is
why j stays at its original value of 34.

“Bitwise” operation on booleans
If we rewrite the above code as follows it performs a traditional boolean AND, but with
no short-circuiting:

int j = 34;
 int p = 0;
 if ((p > 2) & (++j = =19)) //notice a single & now
 {
 …some code…
 }

System.out.println(j); //35

Even though we use the & symbol it is really doing boolean AND-ing (with no short-
circuiting).

29-3

Bitwise AND-ing, or OR-ing more than two numbers:
 What would be the value of j in the following?
 int j = 23 & 19 & 106; //2

 Let’s “stack” these three numbers as follows:

 23 dec = 001 0111 bin (Notice the rules for AND-ing are essentially the

 19 dec = 001 0011 bin same as before…. We must have all 1’s to get a 1.)
106 dec = 110 1010 bin

 000 0010 bin = 2dec

What would be the value of j in the following?
 int j = 27 | 19 | 106; //123

 Again, let’s “stack” the three numbers as follows:

 27 dec = 001 1011 bin (Notice the rules for OR-ing are essentially the

 19 dec = 001 0011 bin same as before…the presence of any 1 will yield a 1.)
106 dec = 110 1010 bin

 111 1011 bin =123dec

Precedence of operators:
Just as PEMDAS (see Lesson 4 and Appendix H) gives the precedence (order) for math
operators, there is also a precedence for bitwise operators. That order is:

 ~ & ^ |

Example 1
 System.out.println(117 & 46 | 98); //102
 Do the 117 & 46 first and get 36.
 Then do 36 | 98 and get 102.

Example 2
 System.out.println(117 | 46 & 98); //119
 Do the 46 & 98 first and get 34.
 Then do 117 | 34 and get 119.

Recall that Lesson 8 gives a precedence order for boolean operators (!, = =, !=, ^, &&, ||)

29-4

Exercise on Lesson 29

This code applies to problems 1 - 7:
 int m = 45;
 int k = 102;

int p = 4;

In each problem state what’s printed.

1. System.out.println(m << 2);

2. System.out.println((m/2) >> 2);

3. System.out.println(k << p);

4. System.out.println(-m >>> 2);

5. System.out.println (k << 1);

6. System.out.println(222 >>> 2);

7. System.out.println(p >> p);

8. What gets printed?

int jz= 3;
 int ii = 5;
 if ((ii > 2) & (jz = =ii--)) //notice a single &
 {
 …some code…
 }

System.out.println(ii);

9. What gets printed?
int mk= 3;

 int sd = -4;
 if ((sd > 2) & (sd = = ++mk)) //notice a single &
 {
 …some code…
 }

System.out.println(mk);

10. What gets printed?
int mk= 3;

 int sd = -4;
 if ((Math.abs(sd) > 2) | (sd = = ++mk)) //notice a single |
 { …some code… }

System.out.print(mk++); //notice print, not println
System.out.println(mk++);

29-5

In the following problems, what gets printed?

11. System.out.println(122 & 18 & 79);

12. System.out.println(122 | 18 | 79);

13. System.out.println(122 | 18 & 79);

14. System.out.println(122 & 18 | 79);

29-6

Bitwise Operators… Contest Type Problems

1. Suppose we wish to subtract the
bitwise-OR of m and n from the bitwise-
AND of m and n. To which of the
following should we set z?

A. (m && n) – (m ^ n)
B. (m & n) – (m | n)
C. m – n
D. (m && n) – (m || n)
E. None of these

public static int Herman(int m, int n)
{
 int z = ???;
 return z;
}

2. What is output by the code to the right?

A. 9 true
B. 10 true
C. 9 false
D. 10 false
E. None of these

int p = 9;
int q = -1;
boolean sim = (q-- > 5) & (p++ > 22)
System.out.println(p + “ ” + sim);

3. What is the value of w?

 int xz[] ={6, 0, 3, 3, 5, -1, 12, 7, 3, 3};
 int w = theMethod(xz);

A. Exception is thrown
B. 5
C. 6
D. 0
E. None of these

4. What is the value of w?

 int xz[] ={2, 0, 3, 3, 5, 4, 2, 7, 3, 3};
 int w = theMethod(xz);

A. Exception is thrown
B. 5
C. 6
D. 0
E. None of these

public static int theMethod (int k[])
{
 int p=0;
 for(int j =0; j < k.length; j++)
 if (k[j] >= 0 & k[j]<=k.length & k[k[j]]
 = =3)
 p++;
 return p;
}

5. What is the value of w?

 int xz[] ={6, 0, 3, 3, 5, -1, 12, 7, 3, 3};
 int w = theMethod(xz);

A. Exception is thrown
B. 3
C. 4
D. 5
E. None of these

public static int theMethod (int k[])
{
 int p=0;
 for(int j =0; j < k.length; j++)
 if (k[j] >= 0 && k[j]< k.length && k[k[j]]
 = =3)
 p++;
 return p;
}

29-7

Project… Tweaking for Speed

Since most computers are very fast, we are not normally concerned with how fast our code runs.
However, consider the following code that may be inside a loop that iterates many times.

 int p = 386; q = 581, n = 0;
 n = ((p * 2) + q)/2;

Just a slight reduction in execution time of this code may result in the loop being completed in a
significantly shorter time. There are two things we can do to this code to make it run faster.

• Algebraically simplify the right side to p + q/2. Notice that where we originally had both
a multiplication and a division, we now have only a single division in this simplified
version. This, of course, will execute faster.

• Replace /2 with >>1. (It turns out that a shift to the right is faster than a division by
2; however, it produces the same results.)

Use the following code to time the two different loops for the sake of comparison. You supply
the missing code using the two “speed enhancements” mentioned above.

public class Tester
{

 public static void main(String gg[])
 {

 int p = 386, q = 581, n = 0;

 System.out.println("Hello"); //Start timing first loop when “Hello” is printed
 for(int j=0; j<2000000000; j++)
 {

 //for(int k = 0; k < 1000; k++) //Use this extra loop for faster computers
 n = ((p * 2) + q) / 2;
 }
 System.out.println(n); //When this line prints, stop timing the first loop and

 //begin timing the second loop.

 for(int j=0; j<2000000000; j++)
 {
 n = ..appropriate code for speed.. ;
 }
 System.out.println(n);

 }
}

The second loop should run about 30% - 40% faster than the first loop.

Hint: Sometimes, waiting for the appearance of printed lines (as described above) is an
unreliable means of starting and stopping a timer. There is a way to have the computer
automatically time these two loops. See page 48-2 for more on this technique.

30-1

Lesson 30…..Random Numbers

Why random?

Why would we want random numbers? What possible use could there be for the
generation of unpredictable numbers? It turns out there are plenty of applications, and
the following list suggests just a few:

1. Predictions for life expectancy …used in insurance
2. Business simulations
3. Games …gives users a different experience each time
4. Simulations for scientific research, etc.

Important methods:

The Random class (requires the import of java.util.Random) generates random numbers
and has three methods, besides the constructor, that are of interest to us. These are not
static methods, so we must first create an object:

Constructor

public Random() // Signature

 Example:

 Random rndm = new Random();

nextInt()
public int nextInt() // Signature

This yields a randomly selected integer in the range Integer.MIN_VALUE to
Integer.MAX_VALUE. (-2,147,843,648 to 2,147,843,647 as specified in
Appendix C).

Example:
int x = rndm.nextInt(); //x could be any integer from -2,147,843,648 to

 //2,147,843,647

nextInt(n)
public int nextInt(int n) // Signature
 This yields a randomly selected integer (0, 1, 2, …, n-1).

Example:
 int x = rndm.nextInt(21); //x could be any integer from 0 to 20, inclusive for both

nextDouble()

public double nextDouble() // Signature
This yields a randomly selected double from 0 (inclusive) to 1 (exclusive) and
behaves exactly as does Math.random() (discussed in Lesson 6).

Example:

 double d = rndm.nextDouble(); //generates doubles in the range 0 < d < 1

Because of the two versions of nextInt, we notice that our Random class has two methods
of the same name (but different parameters). We say the methods named nextInt are

30-2

overloaded. In some contexts overloading is bad (example, overloading a truck).
However, in the software sense of overloading, it is perfectly normal and acceptable.

Typical Problems:

1. Suppose we want a range of integers from 90 to 110, inclusive for both.

First we subtract (110 – 90 = 20). Then add 1 to get 21. Now set up your code as follows
to generate the desired range of integers:

 int r = 90 + rndm.nextInt(21);

Put this last line of code in a for-loop, and you will see a range of integers from 90 to
110. Loop through 1000 times, and likely you will see every value…most will be
repeated several times.

 int r = 0, count = 0;
 Random rndm = new Random();
 for(int j = 0; j < 1000; j++) {
 r = 90 + rndm.nextInt(21);
 System.out.print(r + “ ”);

//For convenience in viewing on a console screen, the following loop
//produces a new line after 15 numbers are printed side-by-side.

 count++;
 if(count >15) {
 System.out.println(“ ”);
 count = 0;

 }
}

2. Suppose we wish to generate a continuous range of floating point numbers from 34.7838
(inclusive) to 187.056 (exclusive). How would we do this?

First, subtract (187.056 – 34.7838 = 152.2722). Now set up your code as follows
to generate the desired range.

 Random rndm = new Random();
 double r;

 r = 34.7838 + 152.2722 * rndm.nextDouble();
 // Generates continuous floating point numbers in the range
 // 34.7838 < r < 187.056

Some additional methods of the Random class:

nextBoolean() … returns a random boolean value (true or false).

nextGaussian() … returns a Gaussian (“normally”) distributed double with a mean value
of 0.0 and a standard deviation of 1.0.

30-3

Project… Generate Random Integers
As described in problem 1 above, generate 33 random integers in the inclusive range from 71 to
99.

Project… Generate Random Doubles
As described in problem 2 above, generate 27 random doubles in the inclusive range from 99.78
to 147.22.

Exercise on Lesson 30
In the following problems assume that rndm is an object created with the Random class. Assume
d is of type double and that j is of type int.

1. What range of random numbers will this generate?
j = 201 + rndm.nextInt(46);

2. What range of random numbers will this generate?
d = 11 + 82.9 * rndm.nextDouble();

3. What range of random numbers does nextDouble() generate?

4. List all numbers that rndm.nextInt(10) might generate.

5. Write code that will create an object called rd from the Random class.

6. Write code that will create a Random object and then use it to generate and print 20

floating point numbers in the continuous range 22.5 < r < 32.5

7. What import is necessary for the Random class?

8. Write code that will randomly generate numbers from the following set. Printout 10 such

numbers.
18, 19, 20, 21, 22, 23, 24, 25

9. Write code that will randomly generate and print 12 numbers from the following set.
100, 125, 150, 175

10. Write a line of code to create a Random class object even though Random wasn’t
imported.

30-4

Random Numbers… Contest Type Problems

1. Which of the following is a possible output?

A. 0
B. 36
C. 37
D. Throws an exception
E. None of these

Random rd = new Random();
System.out.println(rd.nextInt(36));

2. To simulate the result of rolling a normal 6-sided
die, what should replace <*1>

A. rdm.nextDouble(6);
B. rdm.nextInt(7);
C. 1+ rdm.nextDouble(7);
D. 1 + rdm.nextInt(6);
E. 1 + rdm.nextDouble(6)

public static int dieOutcome()
{
 Random rdm = new Random();
 int die = <*1>
 return die;
}

3. Which of the following is a possible output of
the code to the right?

A. 0
B. .9999
C. 5.0
D. 6.0
E. None of these

java.util.Random rd = new java.util.Random();
System.out.println(1+ 5 * rd.nextDouble());

4. What would be the range of possible values of
db for the following line of code?
 double db = genRndDbl(4, 1);

 A. 1 < db < 5
 B. 0 < db < 5
 C. 1 < db < 4
 D. 1 < db < 5
 E. 0 < db < 5

public static double genRndDbl(int m, int a)
{
 Random r = new Random();
 double d = a + m * r.nextDouble();
 return d;
}

5. What would be the replacement code for <*1>
to generate random numbers from the following
set?
 {20, 35, 50, 65}

A. 20 * 15 + ri.nextInt(4);
B. 20 + 15 * ri.nextInt(5);
C. 15 * 20 + ri.nextInt(4);
D. 15 + 20 * ri.nextInt(5);
E. None of these

Random ri = new Random();
int ri = <*1>

6. When a class has more than one method of the same name, this is called which of the following?

 A. overloading B. inheritance C. overriding D. polymorphism

 E. None of these

30-5

7. Which of the following “tosses” a Coin object
named theCoin, and produces a true when the
toss() method yields a HEADS?

A. theCoin.toss = = HEADS
B. toss = = 0
C. theCoin.toss() = = Coin.HEADS
D. theCoin.HEADS = = HEADS
E. Both C and D

8. Assuming that the Random class is “perfect” and
generates all of the integers with equal probability,
what is the probability that toss() returns a head?

A. slightly over .5
B. slightly under .5
C. 1
D. exactly .5
E. None of these

public class Coin
{
 public Coin()
 {
 r = new Random();
 }

 public int toss()
 {
 int i = r.nextInt();
 if(i < 0)
 {
 return TAILS;
 }
 else
 {
 return HEADS;
 }
 }

 public static final int HEADS = 0;
 public static final int TAILS = 1;

 private Random r;
}

30-6

Project… Monte Carlo Technique

Imagine a giant square painted outdoors, on the ground, with a painted circle inscribed in it.
Next, image that it’s raining and that we have the ability to monitor every raindrop that hits
inside the square. Some of those raindrops will also fall inside the circle, and a few will fall in
the corners and be inside the square, but not inside the circle. Keep a tally of the raindrops that
hit inside the square (sqrCount) and those that also hit inside the circle (cirCount).

The ratio of these two counts should equal the ratio of the areas as follows: (Understanding
this statement is essential. It is the very premise of this problem.)

 sqrCount / cirCount = (Area of square) / (Area of circle)

 sqrCount / cirCount = side2 / (π * r2)

Solving for π from this equation we get

 π = cirCount * (side2) / (sqrCount * r2)

So why did we solve for π? We already know that it’s ≅ 3.14159. We simply want to illustrate
that by a simulation (raindrop positions) we can solve for various things, in this case something
we already know. The fact that we already know π just makes it that much easier to check our
answer and verify the technique.

We are going to build a class called
MonteCarlo in which the constructor will
establish the size and position of our square
and circle. Public state variables inside this
class will be h, k, and r. These are enough to
specify the position and size of our circle and
square as shown in the figure to the right.

The requirements of your MonteCarlo class a

1. The constructor should receive h, k, and
instance fields (state variables).

2. State variables h, k, and r are public doub

of the Random class. Call it rndm.

 Y

 r
 k

 h X
 Fig. 30-1

re:

r as described above and use them to set the

les. Create a private instance field as an object

30-7
3. The nextRainDrop_x() method should return a double that corresponds to a random

raindrop’s x position. The range of x values should be confined to the square shown
above. No parameters are passed to this method.

4. The nextRainDrop_y() method should return a double that corresponds to a random

raindrop’s y position. The range of y values should be confined to the square shown
above. No parameters are passed to this method.

5. The method insideCircle(double x, double y) returns a boolean. A true is returned if the

parameters x and y that are passed are either inside or on the circle.

In writing this method, you must remember that the equation of a circle is
 (x – h)2 + (y – k) 2 = r2 …where (h,k) is the center and r is the radius.

Also, the test for a point (x, y) being either inside or on a circle is
 (x – h)2 + (y – k) 2 <= r2

You will need to build a Tester class with the following features:

1. Class name, Tester

2. There is only one method, the main() method.

3. Create a MonteCarlo object called mcObj in which the center of the circle is at (5, 3)

and the radius is 2.

4. Set up a for-loop for 100 iterations:

5. Inside the loop obtain the random coordinates of a rain drop using the
nextRainDrop_x() and nextRainDrop_y() methods.

6. Using the x and y just obtained, pass them as arguments to the insideCircle() method

to decide if our “raindrop” is inside the circle. If insideCircle() returns a true then
increment cirCount.

7. Increment sqrCount on each pass through the loop.

8. After the loop, calculate and print your estimate for π according to the solution for π

on the previous page.

9. Change the number of iterations of the loop to 1000 and run the program again.
Repeat for 10,000, 100,000, and 1,000,000 iterations. The estimate for π should
improve as the number of iterations increases.

31-1

Lesson 31….. StringBuffer Class

The problem:

Manipulating Strings can be very inefficient for the computer with regard to both
memory usage and time of processing. This is especially true if there is a need to
concatenate many small Strings. Each of these small Strings is an object that is only used
once and unfortunately persists in memory…not to even mention the time it takes to
create them.

The solution:

This can lead to significant degradation of performance if multiple concatenations are
done inside loops that iterate a large number of times. In such cases, there is a more
efficient way to handle this problem. Create a StringBuffer and do the desired
concatenations using the append() method of the StringBuffer object. When finished,
simply convert the contents of the StringBuffer object to a String via the toString()
method.

Traditional solution with Strings:

Consider the following traditional way of printing a pattern of X’s:
 Resulting output
 String myXs = “”; X
 for(int j = 1; j <= 8; j++) //generates 8 rows XX
 { XXX
 for(int k = 1; k <= j; k++) XXXX
 { XXXXX
 myXs = myXs + “X”; XXXXXX
 } XXXXXXX

myXs = myXs + ‘\n’; XXXXXXXX
 }
 System.out.println(myXs);

And now with StringBuffer:
Here is the same program using the StringBuffer class:

 Resulting output

StringBuffer sb = new StringBuffer(); X
 for(int j = 1; j <= 8; j++) //generates 8 rows XX
 { XXX
 for(int k = 1; k <= j; k++) XXXX
 { XXXXX
 sb.append(“X”); XXXXXX
 } XXXXXXX

sb.append(‘\n’); XXXXXXXX
 }
 String s = sb.toString();
 System.out.println(s);

31-2

Using the Appendix:

Rather than go into a detailed explanation of the additional methods of the StringBuffer
class, the reader is referred to page J-3 in the Appendix. For the exercises that follow in
this lesson, the reader is expected to sharpen his or her skills at reading and interpreting a
reference such as Appendix J.

Important facts:

Besides what you will learn from Appendix J, you should additionally know the
following important two facts:

1. The println or print methods will print the contents of a StringBuffer directly
without having to convert to a String first (the toString method is automatically
called).

StringBuffer sb = new StringBuffer();
sb.append(“xyz”);
System.out.println(sb); //xyz

2. One of the StringBuffer constructors allows an initial String to be put into the

StringBuffer.

StringBuffer sb = new StringBuffer(“Help, I’m trapped in a StringBuffer!”);

Project… Concatenations Gone Wild
Supply code for the cat method in the class below. Use ordinary String concatenation to
implement this method, then rewrite cat using a StringBuffer object.

public class Tester
{
 public static void main(String args[]) {

 String t1 = cat(68, 108);
 System.out.println(t1);

 String t2 = cat(35, 59);
 System.out.println(t2);

 }

 //Enter this method with a starting ASCII code(start) and an ending ASCII code(end).
 //Return a String that is the concatenation of all the characters represented
 //by the continuous range of ASCII codes, start through end.
 private static String cat(int start, int end)
 { … }
}

The output should appear as follows:

DEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkl
#$%&'()*+,-./0123456789:;

31-3

Exercise on Lesson 31

1. Write code to create a StringBuffer object and store “Hello” in it. Then convert it to a
String and print.

 Use this code in the following problems: (Assume that any changes you make to sb in a
 problem do not affect any future problems.)
 StringBuffer sb = new StringBuffer();
 sb.append(“Humpty Dumpty sat on a wall.”);

2. What is the value of str?
String str = sb.substring(3, 8);

3. What is the value of str?
String str = sb.substring(3);

4. Write code to printout the contents of the buffer after the following code executes. What
will be printed?

sb.append(‘K’);

5. What is the output?
 StringBuffer sss = new StringBuffer();
 sss.append("Hello");
 sb.append(sss);
 String s = sb.toString();
 System.out.println(s);

6. What is the value of len?
int len = sb.length();

7. What is the output?
System.out.println(sb.charAt(4));

8. What is output?
sb.setCharAt(7,'C');
String s = sb.toString();
System.out.println(s);

31-4

9. What is output?
sb.delete(7,9);
String s = sb.toString();
System.out.println(s);

10. What is output?
sb.deleteCharAt(9);
String s = sb.toString();
System.out.println(s);

11. What is output?
sb.insert(0, ‘B’);
String s = sb.toString();
System.out.println(s);

12. What is output?
sb.insert(1, “xxx”);
String s = sb.toString();
System.out.println(s);

31-5

StringBuffer … Contest Type Problems

1.What is the output?

A. Du
B. t (leading space)
C. on
D. nothing
E. None of these

public class StrBuf
{
 public static void main(String args[])
 {
 StringBuffer sb = new StringBuffer();
 int t[] = {1,2,8,9,2};
 String s = "Do unto others as you would have...";
 char [] sc = s.toCharArray();
 for(int j=0; j<t.length; j++) {
 if(t[j] == 2)
 sb.append(sc[j]);
 }
 System.out.print(sb.toString());
 }
}

2.What is the output?

A. 10
B. 9
C. 8
D. Throws exception
E. None of these

public class StrBuf
{
 public static void main(String args[])
 {
 StringBuffer sb = new StringBuffer("groovy");
 String st = "dude";
 sb.append(st);
 System.out.print(sb.length());
 }
}

3.What is the output?
 StringBuffer asb = new
 StringBuffer("abcdef_mnopqrst");
 StringBuffer nsb =
 StrBuf.sbStuff(asb);
 System.out.println(nsb);

A. nothing
B. abcdef_mxxxxxxx
C. abcdef_mnxxxxxx
D. abcdef_mnoxxxxx
E. None of these

public class StrBuf
{
 public static StringBuffer sbStuff(StringBuffer sb)
 {
 for(int j=0; j<sb.length(); j++)
 if(sb.charAt(j) >= 'q' -1)
 sb.setCharAt(j, 'x');
 return sb;
 }
}

4.What is returned by the method call
lefty(“Rubber ducky”)?

A. ducky
B. bber ducky
C. Rubbeb d ckc
D. Throws exception
E. None of these

public static String lefty(String s)
{
 StringBuffer sb = new StringBuffer(s);
 for(int j=0; j<sb.length(); j++)
 if(sb.charAt(j) >= 'q' -1)
 sb.setCharAt(j, sb.charAt(j-2));
 return sb.toString();
}

5.What is the output?

A. PeCokepsi Cola
B. PepCokesi Cola
C. Pepsi ColaCokeCoke
D. Throws exception
E. None of these

StringBuffer sb = new StringBuffer(“Pepsi Cola”);
sb.insert(2, “Coke”);
System.out.println(sb);

32-1

Lesson 32…..Boolean Algebra and DeMorgans’s Theorem

Yes, it’s Algebra. The nightmare continues:

When manipulating complex arrangements of boolean variables, they are found to follow
many of the rules of ordinary algebra. This is easily seen if we think of AND-ing as
multiplication and OR-ing as addition. Consider, for example, the following boolean
expression where a, b, and c are boolean variables:

 a &&(b || c)

Let us agree to rewrite this with “&&” replaced with “*” and “||” replaced with “+”. So,
our expression becomes,

 a * (b + c) = a*b + a*c,

where we have taken the liberty of “multiplying” a into the parenthesis just as we would
in regular algebra. Converting this back in terms of the familiar && and || symbols we
have,

a && b || a && c which can be rewritten as (a && b) || (a && c) for clarity. The
reason we can use the parenthesis like this is because && has higher precedence
than does ||.

In summary we can state the following rule: In boolean expressions in which each AND
is expressed as a * (multiplication) and each OR is expressed as a + (addition), most
simplification is done exactly as would be done with ordinary algebra.

From this point on in this lesson, we will use * for AND and + for OR when
writing and simplifying Boolean expressions. Also, we will take the liberty of
writing things like ab. Just as in ordinary algebra where this means “a times b,”
here it will mean “a*b” which of course ultimately means a AND b.

DeMorgan’s Theorem:

Before we offer more examples of Boolean simplification, we need the services of the
most important theorem in Boolean algebra, DeMorgan’s Theorem. Following are its
two forms:

 !(a + b) = (!a) * (!b) and !(a * b) = (!a) + (!b)

Thus, we see a way to turn ORs into ANDs and vice versa. This is a very powerful tool.
We can even use it where there isn’t a “not” (!) in the original expression:

 (a + b) = !!(a + b) = !(!(a + b)) = !(!a * !b))

Obvious Theorems:

Some other more obvious but still very useful theorems are(a and b are booleans):

a + false = a a * true = a a * false = false
a + true = true ! !a = a a + !a = true
a + a = a a * !a = false
a * a = a

32-2

The three examples in the top row just above are easy to obtain if we substitute 0 for false
and 1 for true. The rules of ordinary algebra are then followed to produce the answers.

This illustrates one of the reasons why we express && as a multiplication sign and || as a
plus sign…because it lets us work in terms of something with which we are already
familiar (hopefully), regular algebra.

A Subtle Theorem:
This is subtle and not very obvious; however, it can be easily confirmed with a truth
table.

a + b = a + (!a)(b) …same as a || b = a || (!a) && (b)

Law of Absorption:

In these theorems, the value of boolean b does not matter (it could just take a hike).

 a * (a + b) = a …same as a = a && (a || b)
 a + (a * b) = a …same as a = a || (a && b)

Now we are ready to present some examples of boolean simplification:

1. Example:
a(!b) + ab
= a(!b + b) = a(true) = a

2. Example:

ab + !ab + !ba + !b(!a)
= b(a + !a) + !b(a + !a)
= b(true) + !b(true) = b + !b = true (Amazing! Always true, doesn’t depend on a and b)

3. Example:

!(!a + b + c)
= (! !a)(!b)(!c) = a(!b)(!c) (notice ! ! a = a)

4. Example:

Express a || b || c using ANDs instead of ORs.
 a || b || c
= (a || b || c)
= ! !(a || b || c)
= ! (! (a || b || c))
= ! (!a && !b && !c)

5. Example:

Illustrate the equivalence of !(a + b) and !a * ! b using truth tables.

a b a + b !(a + b)
false false false true
false true true false
true false true false
true true true false

32-3

a b !a !b !a * !b
false false true true true
false true true false false
true false false true false
true true false false false

Notice the two gray sections are identical. Also, notice that the two black sections are the
same.

6. Example:

Derive the Boolean expression that produces the following truth table. This table uses 1’s
and 0’s. Just thinks of a 1 as a true and a 0 as a false:

Choose only the rows that produce a 1 in the output.

A B C D
(input) (output)

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

 (A)(B)(!C) + (A)(!B)(!C) + (!A)(B)(!C) = D

Notice that we always AND the inputs together that produce an output of 1. Then OR all
of these groups. When AND-ing, any input that is a 0 should be inverted. Thus, for
example, the A, B, and C values of 1, 1, 0 produce (A)(B)(!C).

Now let’s simplify the above expression by factoring out (!C)(A) from the left two terms
as follows:

!CA(B + !B) + !AB !C

The parenthesis evaluates to 1, so we have:

!CA + !AB !C

Now factor out !C and get:

!C (A + !AB)

Apply the “subtle theorem” on page 2 of this lesson and get:

!C (A + B) = D

32-4

Exercise on lesson 32

Assume in the following boolean expressions that a, b, c, and d are boolean quantities.

1. Show the algebraic simplification of ab(!c) + !ab(!c) to b(!c).

2. Show the algebraic simplification of a(!b)c + abc + !abc + !ab(!c) + a(!b) to
!ba + !ab + ac

3. Show the algebraic simplification of !(!a * !c) + !b + !(ad) to true.

4. Show the algebraic modification of !((a + bc) (a + c)) to !a(!b + !c) + !a(!c).

5. Express ab(!c) + !ab(!c) using proper Java syntax (&&, ||, and !).

6. Express a(!b)c + abc + !abc + !ab(!c) + a(!b) using proper Java syntax (&&, ||, and !).

7. Express !(!a * !c) + !b + !(ad) using proper Java syntax (&&, ||, and !).

8. Simplify x + (x * y) where x and y are boolean variables.

9. Express !((a + bc) (a + c)) using proper Java syntax (&&, ||, and !).

10. Express !(a && b && c) using ORs instead of ANDs.

11. Express (a && b && c) using ORs instead of ANDs.

12. Illustrate the equivalence of !(a * b) and !a + !b using truth tables.

13. Which of the following is the equivalent of ((p > 3) || (q < b)) ?

a. !(!(p>3) && !(q<=b))
b. !((p <= 3) && (q >= b))
c. !((p > 3) || (q < b))
d. !(!(p <= 3) || (q >= b))
e. More than one of these

14. Write a Boolean expression that produces the following truth table:

A B C D

(input) (output)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

32-5

Boolean Algebra and DeMorgan’s Theorem… Contest Type
Problems

1. If we call bolTest(x, y) in the code to the
right, which of the following is equivalent
to what it returns? (assume that x and y are
boolean types)

A. !(x && y)
B. !(x && !y)
C. !x && y
D. x || !!y
E. None of these

public static boolean bolTest(boolean a, boolean b) {
 boolean temp = !a || b;
 return temp;
}

2. What is output in the code to the right?

A. Throws an exception
B. false
C. true
D. !bv
E. None of these

boolean bv = true;
for(int j=0; j<79; j++) {
 bv = !bv;
}
System.out.println(bv || false);

3. The ???? column of this table is
represented by which of the following?

A. p && q
B. p && !q
C. !p && q
D. p || q
E. p || !q

p q !p !q ?????
false false true true false
false true true false false
true false false true true
true true false false false

4. Which of the following is the equivalent of !x && (a || b || !c)?

A. !x&&a || !x&&b || !x&&(!c)
B. x && !c
C. !x || a && !x || b && !x || !c
D. Both A and C
E. None of these

5. In the code to the right, which of the
following would equivalently replace the
line of code marked with a rem?

A. return !sv || b
B. return !(!sv || b)
C. return !(sv && !b)
D. return !sv && b
E. None of these

public class smallClass {
 public smallClass(boolean sv1) {
 sv = sv1;
 }

 public boolean decide(boolean b, int j) {
 if (j >30) {
 return !!!(sv || !b); //
 }
 else {
 return false;
 }
 }
 private boolean sv;
}

33-1

Lesson 33…..Selection Operator (?:) ...ternary conditional

A strange syntax:

Consider the code fragment:

 double d = m > 0? x + 1.1 : x * x;

It is easy to understand this syntax if we see the equivalent code implemented with an
ordinary if statement.

 double d;
 if (m > 0)

{
 d = x + 1.1;
}
else
{
 d = x * x;
}

General form of the selection operator:

 (a boolean test) ? value1 : value2 …where value1 is returned if boolean is

 true; otherwise, value2 is returned

Below, are three examples of usage of the selection operator.

1. Example:
int m = 15;
double pos1 = b ? m + 1:m * 2;
System.out.println(pos1); //If b is true, prints 16. If b is false, prints 30.

2. Example:

int jack = 19;
double jill = 19.2;
double merv = 22.02;
 int jDark = (jack = = jill) ? (int)(merv + 20) : (int)merv++;
System.out.println(jDark); //22

3. Example:

 int j = 4, k =5;
 int p = (j <= k * 2) ? j= =k?-j:-k : k;
System.out.println(p); //-5

 This is more easily understood if we rewrite
 int p = (j <= k * 2) ? j= =k?-j:-k : k;

 as int p = (j <= k * 2) ? (j= =k?-j:-k) : k;

33-2

Nested selection operators:

It is possible to “nest” selection operators as was seen above in example 3. Unfortunately,
this can become quite confusing as the following example illustrates.

 int i = s.equals(“Busy Bee”) ? 3 * j : p > q ? 3 : 5;

In the author’s opinion, writing such confusing code is inexcusable. This line of code
would be clearer if written as follows:

int i = s.equals(“Busy Bee”) ? (3 * j) : ((p > q) ? 3 : 5);

Of course, an even clearer way would be to write it like this:

 int i;

if(s.equals(“Busy Bee”))
{
 i = 3 * j;
}
else
{
 if(p > q)
 {
 i = 3;

}
else
{
 i = 5;
}

}

It is recommended to not use the selection operator in code that you create. Use an if
statement instead; however, it is sometimes valuable to know selection operator syntax when
reviewing the code of others.

33-3

Exercise for Lesson 33

1. Write the equivalent of the following code using an if statement.

j = kimTrq < jDorch ? Math.pow(3,p) : p * p;

2. What is output if a = true, b = false, m = 200?

System.out.println(a && b? m*m:--m);

3. What is the value of v if m = true and n = true?

boolean v = m||n ? (m && !n) : (m || !n);

4. double g = 5.0, h = -2.0, s = 9.0;
int ii = (g>=h) ? (int)(h+2) : (int)(s++);
What is the value of ii?

5. What is output by the following code?

int soy = 12, tabasco = 10, noodles = 4, sauce = 0;
int ugh = (Math.pow(soy, noodles)<tabasco) ? 12 : sauce= =tabasco?11:122;
System.out.println(ugh);

6. Rewrite the following code fragment using the selection operator instead of the if
statement.

if (bq < j +1)
{
 z = 1;
}
else
{
 z = 2;
}

7. What is output by the following code?
String toy = “Tickle Me Elmo”;
double price = 20.13;
String s = (toy.equals(“Barbie”)) ? (price>20.13)? “maybe”: “yes”: “no way”;
System.out.println(s);

8. What would have been the answer to problem 7 if toy had been equal to “Barbie”?

33-4

Selection Operator… Contest Type Problems

1. What would be an appropriate way to
call vogue from some other class besides
Tire? (assume a and b are booleans)

A. String s;
s = vogue(false, a&&b?a:!b);

B. int i;
i = vogue(false, a&&b?a:!b);

C. vogue(false, a&&b?a:!b);
D. boolean bb;

Tire obj = new Tire();
bb = obj.vogue(false, a&&b?a:!b);

E. boolean bol;
Tire obj = new Tire();

 bol = obj.vogue(3, a&&b?a:!b);

2. What is returned by the method call,
vogue(true, false)?

A. 0
B. false
C. true
D. Nothing
E. None of these

public class Tire
{
 …
 public boolean vogue(boolean p, boolean q)
 {
 boolean perk;
 perk = !p || q ? p&&q : p||q;
 return perk;
 }
 …
}

3. Which of the following selection
operator statements does the equivalent of
the code to the right?

A. m = (j= =g)?++j:37;
B. m = if(j = =g)?j++:37;
C. m = (j= =g)?37:j++;
D. m = (j= =g)?j:37;

++j;
E. None of these

if(j = = g)
{
 m = j++;
}
else
{
 m = 37;
}

4. What will be the value of ht after the
method call, ht = nerdMethod(false,
false);?

A. 15.70796327
B. 18.3
C. 3.141592654
D. nerdMethod is static and can’t be

called without creating an object
E. false

public static double nerdMethod(boolean x, boolean y)
{
 double coneHeight;
 coneHeight = !(x&&y) ? 18.3 : 5 * Math.PI;
 return coneHeight;
}

34-1

Lesson 34…..Passing by Value and by Reference

Consider the following class:

public class Tester
{

 public static void main(String[] args)
 {

 double b[]= new double[10];
 b[3] = 19;
 BankAccount myAccount = new BankAccount(79); //sets balance to
 int y =39; //79
 method1(y, b, myAccount);
 System.out.println(y + " " + b[3] + " " + myAccount.balance);

 //prints …. 39 -54.0 702.0
 }

 public static void method1(int x, double a[], BankAccount theAccount)
 {

 x =332;
 a[3] = -54;
 theAccount.balance = 702;

 }
}

Passing by value:

This demonstrates that primitive data types like int, double, etc. are passed by value; i.e.
a new copy of the variable is temporarily created in the method and any changes to that
variable in the method are not made to the original. Notice above that we pass an int type
y to the method where the temporary copy is called x. The x is changed to 332; however,
back in the calling code, y stays at its original value of 39.

Passing by reference:

Arrays (the b[] array) and objects (myAccount) are passed by reference. Notice both of
these are modified in method1, and sure enough, back in the calling code these changes
are reflected there.

Actually, arrays are objects, so our rule is simply stated, “Objects are passed by
reference.”

There is an exception to the above rule. A String is an object; however, it acts like a
primitive data type and is passed by value.

Passing an array to a method:

Now we are going to look a little deeper into passing arrays to methods. We must
remember that the array may be named something different in the method; however, that
new name is just a reference back to the original array. Passing an array does not create
a new array in the method.

34-2

Consider the following code:

public class Tester
{

 public static void main(String args[])
 {

 int s[] = {1,2,3,4,5,6};

 for(int g = 0; g < s.length; g++) //prints first
 System.out.print(s[g] + " ");
 System.out.print("\n");

 testMethod(s);

 for(int g = 0; g < s.length; g++) //prints last
 System.out.print(s[g] + " ");

 }

 public static void testMethod(int pp[])
 {
 //pp references the s array in main

 int len = pp.length;
 int t2[] = new int[len];
 for(int j=0; j<len; j++)
 t2[j] = pp[len -j -1];

 for(int k=0; k<t2.length; k++) //prints t2 array
 System.out.print(t2[k] + " ");
 System.out.print("\n");

 pp = t2; //pp now references the local t2 array

 }
}

The output looks like this:

 1 2 3 4 5 6

6 5 4 3 2 1
1 2 3 4 5 6

Everything about this printout looks normal except this last line. How do we explain that
the s array is completely unchanged in the main method even though t2 is clearly
reversed in testMethod and is then assigned to pp (which seems to be a reference back to
s)?

The explanation is in realizing that testMethod initially does assign a reference for pp
back to the s array. However, pp is later assigned as a reference to the local array t2 and
no longer references the s array in main. From this point, pp cannot affect the s array
back in main. The assignment pp = t2 does not assign numbers in one array to another;
rather, it reassigns a reference to an array.

34-3

Exercise for Lesson 34

State what’s printed for each println in the code below:

public static void main(String args[])
{
 MyClass theObj = new MyClass();
 theObj.gravy = 107.43;

 String s = “hello”;

 int xray[] = {1, 2, 3, 4, 5};
 double floozy = 97.4;
 myMethod(floozy, theObj, xray, s);

 System.out.println(floozy); // Problem 1:

System.out.println(theObj.gravy); //Problem 2:
System.out.println(xray[2]); //Problem 3:
System.out.println(s); //Problem 4:

}

public static void myMethod(double floozy, MyClass anObj, int a[], String s)
{
 floozy = 13.1;
 anObj.gravy = 10.001;
 a[2] = 100;
 s = “good bye”;
}

Project… Pass the Gravy, Please

Create a new project called PassingValues and put the two above methods in a Tester class. Then
create a class called MyClass having no constructor, no methods and only one public static
double data member called gravy. The gravy instance field (data member) should only be
declared, not initialized in the MyClass class.

Run the main method and confirm your answers in the exercise above.

34-4

Passing by Value and by Reference… Contest Type Problems

1. What is the output of

System.out.println(d); in main?

A. 30.89
B. 31.89
C. 29.89
D. 0
E. None of these

2. What is the output of

System.out.println(prf[2]); in main?

A. 89
B. 16
C. 122
D. 22
E. None of these

3. What is the output of

System.out.println(myCir.rad); in main?

A. 13
B. 14
C. 122
D. 16
E. None of these

4. What is the output of println in the fg

method?

A. 0
B. 32.89
C. 30.89
D. 31.89
E. None of these

5. Remove the block rem symbols from
within the fg method. What will be the
resulting change in the array prf in main?

A. 0 and 3rd index elements exchanged
B. 1st and 3rd index elements exchanged
C. No change
D. All elements in reverse order
E. None of these

public class Tester
{
 public static void main(String args[])
 {
 int [] prf = {13,22,89,15};
 double d = 30.89;
 Circle myCir = new Circle(18);
 myCir.rad = 14;

 fg(prf, d, myCir);

 System.out.println(d);
 System.out.println(prf[2]);
 System.out.println(myCir.rad);
 }

 public static void fg(int [] x, double d, Circle c)
 {
 d++;
 x[2] = 16;
 c.rad = 122;
 System.out.println(d++);

 /*int nn[] = new int[x.length];
 nn[3] = x[0];
 x = nn; */
 }
}

34-5

6. What is output by the following code if

the harvest method is given in the code to
the right?

int []gem = {2,3,4,5,6};
harvest(gem);

 for(int k=0; k<gem.length; k++)
 System.out.print(gem[k] + " ");

A. 2 3 7 5 6

0 2 4 6 8
2 3 7 5 6

B. 2 3 4 5 6
0 2 4 6 8
2 3 4 5 6

 C. 2 3 7 5 6
 0 2 4 6 8
 0 2 4 6 8

 D. 2 3 4 5 6
 8 6 4 2 0
 2 3 4 5 6

 E. None of these

public static void harvest(int h[])
{
 int z[] = new int[h.length];

for(int j=0; j<z.length; j++)
 z[j] = j * 2;

h[2] = 7;

for(int k=0; k<h.length; k++)

 System.out.print(h[k] + " ");
 System.out.println("\n");

h = z;

for(int k=0; k<h.length; k++)

 System.out.print(h[k] + " ");
 System.out.println("\n");
}

35-1

Lesson 35…..Two-Dimensional Arrays

Consider the following array (3 rows, 2 columns) of numbers:

22 23
24 25
26 27

Let’s declare our array as follows:

int a[] [] = new int [3] [2];

Subscript convention:

Notice that in both mathematics and computer science, designations for a two
dimensional array (subscripted variable) conventionally have rows first and columns
second. Just think of RC Cola, …RC (rows, columns).

Initializing a two-dimensional array:

Now let’s initialize the a array, i.e. store values in the various positions. There are three
ways to do this:

The first way:
 int a[] [] = new int [3] [2]; //declaration
 a[0] [0] = 22; //initialization from here on down
 a[0] [1] = 23;
 a[1] [0] = 24;
 a[1] [1] = 25;
 a[2] [0] = 26;
 a[2] [1] = 27;

The second way:
 int a[] [] = { {22, 23},
 {24, 25},
 {26, 27} }; //Notice that declaration and initialization
 // must both take place on the same line.
The third way:
 int a[] [] = new int[][] { {22, 23},
 {24, 25},
 {26, 27} };

How many rows and columns?
Determine the number of rows and columns in a two-dimensional array (sometimes
called a matrix or subscripted variables) as follows:

For the matrix above, a.length returns a value of 3…the numbers of rows.

For the matrix above,

a[0].length returns a value of 2…the number of columns in row 0
a[1].length returns a value of 2…the number of columns in row 1
a[2].length returns a value of 2…the number of columns in row 2

35-2
“Ragged” arrays:

The previous discussion seems redundant, since all rows have 2 columns. So we begin to
wonder if it’s possible for various rows to have different number of columns? Is it really
possible to produce a “ragged” looking array with uneven rows? The answer is, “Yes,”
even though it’s highly unusual and seldom used.

Suppose we want the following matrix structure:

X X X X
X X
X X X

Here’s the code that would declare such an array:

int a[] [] = new int[3] []; //array has 3 rows, unspecified number of columns
a[0] = new int[4]; //row 0 has 4 columns
a[1] = new int[2]; // row 1 has 2 columns
a[2] = new int[3]; // row 2 has 3 columns

Incidentally, the first line of code above (int a[] [] = new int[3] [];) could be
equivalently replaced with the following; however, the former is preferred:

int a[] [] = new int[3] [0]; //3 rows, unspecified number of columns

While on the subject of working with a single row of a two-dimensional array, consider
an array a of three rows declared as was done above. How would we pass a single row of
this array to a method called myMethod in which each element would be initialized?

 a[2] = new int[3]; //Row 2 has 3 columns. Before passing a[2] below, we must

 //have specified the number of columns.
 myMethod(a[2]); // Call the method and pass the row with index 2.
 . . .
 public void myMethod(int [] x) //Notice how we receive the row
 {

x[0] = 36; // Initialize the three columns.
x[1] = 101;
x[2] = -45;

}

Automatic initialization of arrays:

As with all one-dimensional numeric arrays, all elements of two-dimensional arrays are
also automatically initialized to 0 until specific values are given.
 int abc[][] = new int[20][30];
 System.out.println(abc[5][22]); //0

Using the Arrays class:

In Lesson 19 (page 3), several methods of the Arrays class were discussed. Below we
present their equivalents as used with two-dimensional arrays.

int a[][] = { {3, 9, 2, 1},
 {5, 7, 6, 0} };
int b[][] = { {0, 2, 8, 4},
 {3, 9, 2, 1} };

35-3

System.out.println(Arrays.equals(a, b)); //always false…won’t compare entire two-
 //dimensional arrays.
System.out.println(Arrays.equals(a[0],b[1])); //true, compares row 0 of a to row 1 of b.

Arrays.sort(a); //illegal (run-time exception), can’t sort entire two-dimensional array.
Arrays.sort(a[0]); // sorts the 0 row of the a matrix. Row 0 is now {1, 2, 3, 9}

System.out.println(Arrays.binarySearch(a[0], 9)); //3, returns index of the 9 in row 0.
 //This row must have been sorted first.
Arrays.fill(a, 22); //illegal, can’t fill entire two-dimensional array
Arrays.fill(a[1], 22); //fills this row with 22 in each position

Exercise on Lesson 35

Consider the following a matrix for problems 1 - 11:

5 -16 9 21
22 19 -101 36
18 17 64 -2

1. Write a single line of code that will create the above integer array. Call the array a.

2. Write a line of code that will printout the array element occupied by –101.

3. The above table can be described as:
(a) an Array (b) a Matrix (c) numbers that could be represented as subscripted
variables (d) a, b, and c (e) none of these

4. Write a line of code that will print the number of rows in matrix a.

5. Write a line of code that will print the number of columns (in matrix a) in the row given
by index 2.

6. What is printed by System.out.println(a[1][3]); ?

7. Show what the printout will look like:
for (int row = 0; row < a.length; row++)
{
 for(int col = 0; col < a[row].length; col++)

35-4
 {
 System.out.print(a[row][col] + “\t”);
 }
 System.out.println(“ ”);
}

8. What is printed by the following?
Arrays.sort(a[0]);
System.out.println(Arrays.binarySearch(a[0],5));

9. What is printed by the following?
Arrays.sort(a[0]);
System.out.println(Arrays.binarySearch(a[0],0));

10. Show what the matrix a would look like after the following code executes:
for (int row = 0; row < a.length; row++)
{
 for(int col = 0; col < a[row].length; col++)
 a[row][col] = row * col;
}

11. Show what the matrix a would look like after the following code executes:
Arrays.fill(a[2], -156);

12. Must all two-dimensional arrays have the same number of columns in each row?

In the remaining problems, some of the code might not compile or will give a run-time
exception. If that’s the case then state, “Won’t compile” or “Run-time exception.”

13. What is printed by the following?
double d[][] = new double[8][25];
System.out.println(d[4][2]);

14. If x and y both represent two-dimensional int arrays and have identically the same
elements, what does the following print?

System.out.println(Arrays.equals(x,y));

15. Is it possible to sort z (a two-dimensional array) with Arrays.sort(z); ?

16. Is it possible to use one of the sort methods of the Arrays class to sort a single row (index
3) of the two-dimensional matrix g? If so, show the code that will accomplish this.

35-5

Project… Matrix Multiplication

The primary objective in this project will be to write code that will multiply the following two
matrices and produce the indicated answer.

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

If you are not familiar with the intricacies of matrix multiplication, Appendix AA is supplied to
provide a brief overview of the subject. In fact, the above example is used in that appendix.

Create a project called MatrixStuff that consists of two classes. These two classes will be called
Tester and MatrixMult and will meet the specifications listed below.

The Tester class (main method):

1. Hard code the int a[][] array so as to be comprised of the 3 X 4 matrix on the left in the
example above.

2. Hard code the int b[][] array so as to be comprised of the 4 X 2 middle matrix in the

example above.

3. Call a static method of the MatrixMult class called mult in which we pass the a and b
arrays (matrices) as arguments and receive back an integer array as the product matrix.

4. Print the product matrix.

5. The output of main should appear as follows:

-3 43

18 -60

1 -20

The MatrixMult class:

1. No constructor.

2. Create a single static method called mult that receives two int arrays (matrices) as

parameters that are to be multiplied in the order in which they are received.

3. The mult method is to return an array that is the product matrix of the two parameter

arrays it receives.

4. The code in the mult method is to determine the dimensions of the matrices that it
receives and set up a “product” array (matrix) to be returned with the appropriate
dimensions.

35-6
5. The code in mult should be general so as to adapt to any two matrices to be multiplied;

however, for the sake of simplicity, you may assume that the matrices received as
parameters are always compatible with each other for multiplication.

6. The code in the mult method will multiply the two incoming matrices so as to correctly

produce each element of the product matrix.

Project… Matrix Multiplication with File Input

Modify the previous project so that the matrices to be input are input from a text file. The “rules”
of the text file are:

The start of a new matrix will be indicated with “matrix”. The start of a new row will be
indicated with “row” followed by the numbers assigned to each column of that row.

Call your data file MatrixData.txt. It should have the following content:

matrix
row
1
2
-2
0
row
-3
4
7
2
row
6
0
3
1
matrix
row
-1
3
row
0
9
row
1
-11
row
4
-5

Output should be identical to that in the previous project (since the two matrices to be multiplied
are the same as before).

35-7
Two-Dimensional Arrays… Contest Type Problems

1. Which of the following is the resulting
array after running the code to the right?

A.
0 0 0 0
1 1 1 1
2 2 2 2

B.

0 1 2 3
0 1 2 3
0 1 2 3

C.

1 2 3 4
1 2 3 4
1 2 3 4

D.

1 1 1 1
2 2 2 2
3 3 3 3

E. None of these

int [][] zorro = new int[3] [4];
for(int row=0; row<zorro.length; row++)
{
 for(int col=0; col<zorro[row].length; col++)
 {
 zorro[row][col] = col + 1;
 }
}

2. Which of the following is the resulting
array after running main in the Tester class
to the right?

A.
4 5 6 7
0 1 2 3
-1 0 1 2

B.

5 6 7 8
1 2 3 4
0 1 2 3

C.

6 7 8 9
2 3 4 5
1 2 3 4

D.

1 1 1 1
2 2 2 2
3 3 3 3

E. None of these

public class Tester
{
 public static void main(String args[])
 {
 int z[][] = { {5,6,7,8},
 {1,2,3,4},
 {0,1,2,3} };
 MatrixManip f = new MatrixManip();
 f.adjust(z);
 }
}

public class MatrixManip
{
 …
 public void adjust(int[][] mat)
 {
 for(int p=0; p<mat.length; p++)
 for(int q=0; q<mat[p].length; q++)
 --mat[p][q];
 }
 …
}

35-8
3. What is printed by
System.out.println(intArray.length);?

A. 2
B. 4
C. 8
D. 0
E. None of these

4. What is printed by
System.out.println(intArray[2].length);?

A. 2
B. 4
C. 8
D. 0
E. None of these

int [][] intArray = { {11,2}, {20,30}, {7,9}, {0,1} };

5. Initialize the array d and call doStuff as
follows:
 int d[][] = { {-1,0,1},
 {5,6,7},
 {2,3,4} };
 doStuff(d);

 What does the array d look like now?

A.
-1 5 2
0 6 3
1 7 4

B.

1 0 -1
7 6 5
4 3 2

C.

2 3 4
5 6 7
-1 0 1

D.

-1 0 1
5 6 7
2 3 4

E. None of these

public static void doStuff (int [][] frst)
{
 int len = frst.length;
 int sec[][] = new int[len] [];
 for(int j=0; j<len; j++)
 sec[j] = frst[len –j -1];
 frst = sec;
}

36-1

Lesson 36…..Inheritance

Within a new project we will create three classes……BankAccount, SavingsAccount, and Tester.
First, the BankAccount class:

public class BankAccount
{
 public BankAccount(double amt) //Constructor
 { balance = amt; }

 public double getBalance()
 { // You supply code here that returns the state variable, balance.}

 public void deposit(double d)
 { //You supply code here that adds d to balance. }

 public void withdraw(double d)
 { //You supply code here that subtracts d from balance. }

 private double balance;
}

Subclass and Superclass:

This BankAccount class will be known as our Superclass. We will now create a
SavingsAccount class that will be known as a Subclass. This SavingsAccount class is a
perfect candidate to use as a subclass of BankAccount since it needs all the methods and
state variable of the superclass, BankAccount. To make the SavingsAccount class inherit
those methods and the state variable, use the key word extends as follows:

public class SavingsAccount extends BankAccount
{
 public SavingsAccount(double amount, double rate) //Constructor
 {

super(amount); //Calls the constructor in
 interestRate = rate; //BankAccount and sets balance
 }

 public void addInterest()
 {
 double interest = getBalance() * interestRate / 100;
 deposit(interest);
 }
 private double interestRate;
}

There are some significant features of the constructor in SavingsAccount. In the absence
of super(amount), it would have tried to automatically call the BankAccount constructor
and would have failed, since that constructor requires a parameter and we would not have
supplied one. By making super(amount) the first line of code, we are able to supply the
needed parameter. When used, it must be the first line of code in the constructor.

36-2

There is also something interesting in the addInterest method above. Notice that we are
calling the getBalance and deposit methods. This is completely legal even though they
are not static methods and we are not accessing them with a BankAccount object. Why is
it legal? It is because we have inherited these methods from BankAccount by virtue of
the extends BankAccount portion of our class signature.

Testing the subclass and superclass:

And finally, we will create a class called Tester that we will use to test the interaction of
our superclass and subclass:

public class Tester
{
 public static void main(String[] args)
 {

 //This begins a new account in which the initial balance is 200
 // and the interest rate is 5%.

 SavingsAccount myAccount = new SavingsAccount(200, 5);

 //Make a deposit…notice we use an inherited method, deposit
 myAccount.deposit(132.14);

 myAccount.addInterest();

 //Here, we use another inherited method, getBalance
 System.out.println(“Final balance is: ” + myAccount.getBalance());

 }
}

Important terms and ideas:

Superclass…the “original” class (sometimes called the base class)

Subclass…the one that says “extends” (sometimes called the derived class)

abstract
a. As applied to a class…Example, public abstract class MyClass… prevents

objects from being instantiated from the class. Why would we want to do this?
Perhaps the only way we would want our class used is for it to be inherited.

b. As applied to a method…Example, public abstract void chamfer(); …means that

no code is being implemented for this method in this class. This forces the
subclass that inherits this class to implement the code there.

Note that the signature of an abstract method is immediately followed by a
semicolon and that there can be no body (curly braces) for the method.

If any method in a class is abstract, then that forces its class to be abstract too.

final

a. As applied to a class…public final class MyClass…means no other class can
inherit this one.

36-3

b. As applied to a method…public final void bisect()…means it can’t be overridden

in a subclass. See the discussion below for the meaning of “overriding”.

Overriding…if a method is defined in a superclass and is also defined in a subclass…
then when objects are made from the subclass, the redundant method in the
subclass will take precedence over the one in the superclass. This is overriding.

There is a way to access a method in a superclass that has been
overridden in the subclass. Let’s suppose the method’s signature in
both classes is:
 public void trans(double x)

From within some method of the subclass you can access the method
trans in the superclass via a command like this:
 super.trans(15.07);

private methods not inherited:

Methods and state variables in the superclass that are designated as private are
not inherited by the subclass.

Shadowing…is when a state variable in a subclass has a name identical to that of a

state variable in the superclass. We do not say that the subclass variable overrides
the other, rather that it shadows it. In such cases, uses within the subclass of the
redundant variable give precedence to the subclass variable. It is, however,
possible to access the shadowed variable in the superclass by creating a method in
the superclass to access it. Suppose that the shadowed public variable in question
is double y. Then, in the superclass create this method.

public double getY()
{ return y; }

Since this method is inherited by your subclass, use it to obtain the y value in the
superclass. Assuming that an object created with your subclass is called myObj, consider
the following code within the subclass:
 double d = myObj.getY(); // returns y from the superclass

 double p = myObj.y; // returns y from the subclass

There is also another type of shadowing. Let’s look at a method that brings in the variable
z as a parameter. Complicating things is a state variable also named z.
 public class MyClass

{
 . . .

 public void aMethod(int z)
{

 z++; //This increments the local z which has precedence here within
 //this method.

 this.z = 19; //only way to access the state variable z from within

 //this method.
} . . .
public int z;

 }

36-4

Cosmic Superclass… Every class that does not extend another class automatically
extends the class Object (the cosmic superclass). Following are the signatures and
descriptions of four of the most important methods of the Object class.

Signature Description
String toString() Returns a string representation of the object. For

example, for a BankAccount object we get
something like BankAccount@1a28362

boolean equals(Object obj) Tests for the equality of objects. This tests to
see if two variables are references to the same
object. It does not test the contents of the two
objects.

Object clone() Produces a copy of an object. This method is
not simple to use and there are several pitfalls
and is therefore, rarely used.

int hashCode() Returns an integer from the entire integer range.

In many classes it is commonplace to override the inherited methods above
with corresponding methods that better suit the particular class. For example,
the String class overrides equals so as to actually test the contents.

 Table 36-1

Creation of objects:

Suppose we have a superclass called SprC and a subclass called SbC. Let’s look at
various ways to create objects:

a. SbC theObj = new SbC();

SprC anotherObj = theObj;

Since anotherObj is of type SprC it can only access methods and state
variables that belong to SprC.

b. SprC hallMark = new SbC();

Since hallMark is of type SprC it can only access methods and state
variables that belong to SprC.

c. SbC obj = new SprC(); //illegal

Expecting a particular object type:

Any time when a parameter is expecting to receive an object of a particular type, it is
acceptable to send it an object of a subclass, but never of a superclass. This is because the
passed subclass object inherits all the methods of the object. Otherwise, the expected
object may have methods not in a superclass object. Consider the following hierarchy of
classes where each class is a subclass of the class immediately above it.

Person
Male
Boy

36-5

Suppose there is a method with the following signature:
public void theMethod(Male ml)

The method theMethod is clearly expecting a Male object; therefore, the following calls
to this method would be legal since we are either sending a Male object or an object of a
subclass:
 Male m = new Male();
 theMethod(m); //ok to send m since it's expecting a Male object
 Boy b = new Boy();
 theMethod(b); //ok to send b since b is created from a subclass of Male

Since theMethod is expecting a Male object, we can’t send an object of a superclass.

Person p = new Person();
theMethod(p); //Illegal
theMethod((Male)p); //Legal if we cast p as a Male object

Using the same classes from above, the following examples illustrate legal and illegal
object creation. Notice when we use a class on the left, the class on the right must be
either the same class or a subclass.

Person p = new Male(); //legal
Person p = new Boy(); //legal
Male m = new Boy(); //legal
Boy b = new Male(); //illegal
Boy b = new Person(); //illegal
Male m = new Person(); //illegal

instanceof

This method tells us if an object was created from a particular class. Suppose Parent is a
superclass, Child is one of its subclasses, objP is a Parent object, and objC is a Child
object. Also, assume that Circle is some unrelated class.

d. (objC instanceof Child) returns a true

e. (objC instanceof Parent) returns a true

f. (objC instanceof Circle) returns a false

g. (objP instanceof Child) returns false

h. (objP instanceof Parent) returns true

i. (objP instanceof Circle) returns false

Notice the syntax of instanceof is that an object precedes instanceof and a class,
subclass or interface follows.

The big picture:
The following shows the function of each part in the declaration and creation of an object
in which a superclass, subclass, or interface may be involved.

36-6

<class, superclass, or interface name> objectName = new <class or subclass name()>;

This tells us where the methods are implemented
that we are to use (including the constructor(s)).

This specifies the object type and
what methods the object can use.

 Fig. 36-1 Determining object type, legal methods, and where the methods are implemented.
 If a method in the subclass overrides that of the superclass, then code in the subclass runs.

Inheritance is considered one of the most important, but, unfortunately, one of the most difficult
aspects of Java. See Appendix U for an enrichment activity in which you would be able to
participate in electronic communities in the form of message boards (forums). Investigate the
questions and answers that other programmers post concerning this topic.

Exercise (A) on Lesson 36

public class Red extends Green
{
 public int blue(double x)
 { . . . }

 public String s;
 private int i;
}

public class Green
{
 public double peabody(double y)
 {
 return mm;

 }

 private boolean crunch()
 { . . . }

 private double mm;
 public long xx;
}

1. Which of the above two classes is the base class?

2. Which of the above two classes is the subclass?

3. Which of the above two classes is the superclass?

36-7

4. Which of the above two classes is the derived class?

5. Is this legal? If not, why not? (Assume this code is in some class other than the two
above)

Red myObj = new Red();
boolean bb = myObj.crunch();

6. Is this legal? If not, why not? (Assume this code is in some class other than the two

above)
Red myObj = new Red();
int bb = myObj.blue(105.2);

7. Write code for the blue method that will printout the mm state variable.

8. Write code for the blue method that will printout the xx state variable.

Use the following two classes for problems 9 - 12:

public class Red extends Green
{
 public int blue(double x)
 { . . . }

 public double peabody(double vv)
 {

 }

 public String s;
 private int i;
}

public class Green
{
 public Green(long j)
 {
 xx = j;
 }

 public double peabody(double y)
 {
 return mm;

 }

 private Boolean crunch()
 { . . . }
 private double mm;
 public long xx;
}

36-8

9. Consider the following constructor in the Red class:
public Red()
{

//What code would you put here to invoke the constructor in the
 //superclass and send it a parameter value of 32000?

 }

10. Is there any method in Red that is overriding a method in Green? If so, what is it?

11. Look at the peabody method inside Red. Write the code inside that method that will allow
you to access the same method inside its superclass, Green. Let the parameter have a
value of 11.

12. Consider the following constructor in the Red class:

public Red()
{

String s = “Hello”;
super(49);

 }

 Is this code legal? If not, why not?

13. Assume that the following fragments of code are all in a subclass. Match each to an item

from the “sentence bank” to the right.

_____ this(x,y) a. refers to a constructor in the superclass
_____ this.z b. refers to a constructor in the subclass
_____ super(j) c. refers to an overridden method in the super class
_____ super.calc() d. refers to a data member in the subclass

36-9

Exercise (B) on Lesson 36

The following code applies to problems 1 - 3:

public abstract class Hammer
{
 public abstract void duty();
 public abstract int rule(int d);
}

public class Lurch extends Hammer
{
 public void duty()
 {
 int x = Y;
 }

 public int rule(int d)
 {
 Y = d + 1;
 return Y;
 }

 private int Y = 30;
 private int x;
}

1. What is the purpose of making the two methods above abstract?

2. Write out the full signature of the rule method.

3. Which class actually implements the duty method?

4. A class for which you cannot create objects is called a (an)___________ class.

5. public abstract class Felix
{

 . . .
}

Is the following attempt at instantiating an object from the Felix class legal? If not, why?

 Felix myFelix = new Felix();

36-10

6. Is the following legal? If not, why?

public abstract class Lupe
{
 public abstract void fierce()

 { . . . }

 public final double PI = 3.14;
}

7. What is the main reason for using abstract classes?

8. Modify the following class so it is impossible to make subclasses from it.

public class MyClass
{

 . . .
}

9. Why would the following code be pointless?
public final abstract class MyClass
{

 . . .
 //there are no static methods
}

10. public class ChevyChase
 {
 public void Chicago(int x)
 {

 . . .
 }
 }

Modify the above code so as to make it impossible for a subclass that extends
ChevyChase to override the Chicago method.

11. Is it possible to override instance fields (also called state variables)?

12. What is shadowing (as the term applies to superclasses and subclasses)?

36-11

The following code applies to problems 13 – 14, 18 - 20:

public class Parent
{
 public void rubyDoo()
 { . . . }

 . . .

 public int x = 0;
}

public class Child extends Parent
{
 public void busterStein()
 { . . . }

 . . .

 public int x = 39;
}

13. Consider the following code in a Tester class:

Child myChild = new Child();
System.out.println(myChild.x); //What gets printed?

14. Consider the following code in a Tester class:

Child myChild = new Child();

Is there any way using the myChild object to retrieve the x state field within the Parent
class? Write the code that will do this. You may write a new method for either class if
you need to.

15. What is the name of the Cosmic Superclass?

16. What is the name of the class that every class (that does not extend another class)

automatically extends?

17. What are the three main methods of the Object class?

36-12

18. Is the following legal? If not, why not?

Child theObj = new Child();
Parent newObj = theObj;
newObj.busterStein();

19. Is the following legal? If not, why not?

Child theObj = new Child();
Parent newObj = theObj;
newObj.rubyDoo();

20. Is the following legal? If not, why not?

Parent meatloaf = new Child();

For problems 21-25, consider the following. In each problem either state what is printed or
indicate that it won’t compile:

public class A
{

 public A (int x)
 {
 this.x = x;
 }

 public int f()
 {
 return x;
 }

 public int g()
 {
 return x;
 }

 public int x;

}

36-13

public class B extends A
{
 public B (int x, int y)
 {
 super(x);
 this.x = y;
 }

 public int f() { return x + g(); }

 public int zorro() { return x + g(); }

 public int x;
}

21. A a = new B(5, 10);
System.out.println(a.g());

22. A a = new B(5, 10);

System.out.println(a.f());

23. A a = new B(5, 10);

System.out.println(a.x);

24. B a = new B(5, 10);
System.out.println(a.x);

25. A a = new B(5, 10);
System.out.println(a.zorro());

26. Consider the classes Food, Cheese, and Velveta where Cheese is a subclass of Food and

Velveta is a subclass of Cheese. State which of the following lines of code are legal.
Cheese c = new Food();
Velveta v = new Food();
Cheese c = new Velveta();
Food f = new Velveta();
Food f = new Cheese();

36-14

Inheritance… Contest Type Problems

1. What replaces <*1> and <*2> in the code to the right to
indicate that objects cannot be instantiated and that the
methods are not being defined?

A. <*1>: abstract <*2>: abstract
B. <*1>: abstract <*2>: final
C. <*1>: final <*2>: abstract
D. <*1>: final <*2>: final
E. None of these

2. The interest earned on a loan is the product of 1/12, the
principle, the rate, and the months. What replaces <*3> in
the code to the right to correctly compute the
interestEarned() method?

A. months / 12 * rate * ad.getPrinciple()
B. months * rate * ad.getPrinciple() / 12
C. Loan.months /12 * Loan.rate * ad.getPrinciple
D. months * rate * ad.getPrinciple() * (1/12)
E. More than one of these

3. Assume that the class Info is a subclass of
AccountDetails and has a constructor which receives a
double and a String. Which of the following builds a Loan
p object with rate .07, months 4, and principle $450?

A. Loan p (.07, 4, new Info(450, “Bob”));
B. Loan p = Loan(.07, 4, new Info(450, “Bob”));
C. Loan p = new Loan(.07, 4, Info(450, “Bob”));
D. Loan p = new Loan(.07, 4, new Info(450, “Bob”));
E. None of these

public <*1> AccountDetails {
 public <*2> double getPrinciple();
 public <*2> String getName();
}

public <*1> class Financial {
 public <*2> double interestEarned();
 public <*2> double paymentDue();
}

public class Loan extends Financial {
 public Loan(double rate, int months,
 AccountDetails ad)
 {
 this.rate = rate;
 this.months = months;
 this.ad = ad;
 }

 public double interestEarned()
 {
 return <*3>;
 }

 public double paymentDue()
 {
 //code not shown
 }

 private double rate;
 private int months;
 AccountDetails ad;
}

4. What is output by the code below?
 Parent pr = new Parent(7);
 System.out.print(pr.work());

A. 1 B. 0 C. 3 D. 7
E. None of these

5. What is output by the code below?

 Parent pr = new Child(4, 11);
 System.out.print(pr.work());

A. 11 B. 4 C. 1 D. 0
 E. None of these

public class Parent {
 public Parent(int q) {this.q = q;}
 public int work() {return q;}
 private int q;
}

public class Child extends Parent
{
 public Child(int q, int y) {
 super(q);
 this.y = y;
 }

 public int work() {
 return y + super.work();
 }
 private int y;
}

36-15
6. What replaces <*1> in the code to the right that
causes Z to inherit class A?

A. implements A
B. subclass of A
C. subclass of class A
D. extends A
E. inherits A

public class Z <*1>
{
 //methods and data not shown
}

7. Which of the following replaces <*1> in the code
to the right so that the default constructor builds a
Triangle object with base 2 and altitude 5?

A. this(2, 5);
B. Triangle (2, 5);
C. super(2, 5);
D. this(base) = 2; this(altitude) = 5;
E. More than one of these

8. Assume that <*1> has been filled in correctly.
Which of the following returns the area of
EquilateralTri et?

A. (EquilateralTri)et.area()
B. et.super.area()
C. et.(EquilateralTri)area()
D. et.area()
E. None of these

9. Given a Triangle tri that is initialized to hold a
Triangle and an EquilateralTri et that is initialized to
hold a Triangle, which of the following expressions
evaluates to true?

A. Triangle instanceof EquilateralTri
B. tri instanceof et
C. tri instanceof EquilateralTri
D. Triangle instanceof Object
E. None of these

public class Triangle {
 public Triangle()
 {
 <*1>
 }

 public Triangle(int bs, int alt) {
 base = bs;
 altitude = alt;
 }

 public double area()
 {
 return .5 * base * altitude;
 }

 private int base;
 private int altitude;
}

public class EquilateralTri extends Triangle {
 public EquilateralTri (int s) {
 super(s, s * Math.sqrt(3)/2);
 this.s = s;
 }
 private int s;
}

10. Suppose st is a Street object. Which of these is a
valid call to method House.getInfo() using st as an
argument?

A. st.getInfo(Town t)
B. House.getInfo((Town)st)
C. House.getInfo(Town(st))
D. House.getInfo(Town.st)
E. None of these

11. Suppose st is a Street object. What is the value of
this expression? st instanceof Town

A. 0
B. true
C. 1
D. false
E. None of these

public class Town
{
 //code not shown
}

public class Street extends Town
{
 //code not shown
}

public class House
{
 public static void getInfo(Town t)
 { //code not shown }
}

36-16
12. Given the declarations below, which of the
following expressions is true?

 Car cr = new Car();
 Chevy chv = new Chevy();
 Lumina lm = new Lumina();

A. cr instanceof Chevy
B. chv instanceof Lumina
C. cr instanceof Lumina
D. lm instanceof Car
E. More than one of these

13. Suppose that the static method doStuff() of class
Engine takes a parameter of type Lumina. Given the
declarations below, which of these is a valid call to
doStuff()?

 Car cr = new Lumina();
 Chevy chv = new Lumina();
 Lumina lm = new Lumina();

A. Engine.doStuff(chv) B. Engine.doStuff(cr)
C. Engine.doStuff(lm) D. doStuff((Car)lm)
E. None of these

public class Car
{
 //methods and data not shown
}

public class Chevy extends Car
{
 //methods and data not shown
}

public class Lumina extends Chevy
{
 //methods and data not shown
}

14. Suppose that Insect is an abstract class, that Bee is a class that extends Insect, and that Drone is a class
that extends Bee. Given the following declaration, which of these is true?

 Drone d = new Drone();

 A. d instanceof Object B. d instanceof Insect C. d instanceof Bee
 D. d instanceof Drone E. All of these

15. If class Man is a subclass of class Person, what is the syntax for calling a private method of Person
named meth() from within a private method of Man?

 A. this.meth() B. meth() C. super.meth()
 D. super(meth()) E. None of these

16. Which of the following replaces <*1> in the
code to the right to call the constructor for the Pasta
class with the parameter g?

A. this(g);
B. super(g);
C. x.super();
D. Pasta(g);
E. None of these

public class Spaghetti extends Pasta
{
 public Spaghetti(int g, int h)
 {
 <*1>
 }
 …remaining code not shown
}

37-1

Lesson 37…..Exceptions

What is an exception?

An exception is simply an error. Instead of saying an error occurred, we say that an
exception is thrown.

How Java handles exceptions:

Suppose we have a “chain” of methods. The main method is the first in the chain. An
expression in it calls some other method, and an expression in it calls yet another. Let’s
assume some piece of code deep in this chain throws an exception. The code immediately
surrounding the offending code is examined for a try-catch statement. (More on this later;
however, for now, suffice it to say that if a try-catch is present, it handles the error
gracefully without the entire program coming to a halt). If no try-catch is found, control
immediately passes up the chain to the code that called the method in which the error just
occurred. Again, a try-catch statement is sought, and if none is found, control is passed
back up the calling chain one level. This continues until the main method is reached. If it
has no try-catch, the program is halted with a trace of the method calls, the type of
exception, and its error message.

Actually, the above is oversimplified just a bit. In the absence of a try-catch statement,
control is passed up the calling chain one level only when we specify it to happen. This
is done with a throws specifier in the method signature. (More on throws on the next pg)

Forcing an error:

You can force Java to appear to give an error as in the following example from a
BankAccount object. In this example we look at preconditions that we require before this
method is called. The method we will discuss is withdraw(). Certainly, we can’t
withdraw more than what we have in the account. Also, it would be meaningless to
withdraw a negative or zero amount, so we detail these preconditions in the rems above
the method signature.

 /* precondition: amount <= balance
 * precondition: amount > 0 */
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 String s = “Can’t withdraw more than the balance.”;
 IllegalArgumentException e = new IllegalArgumentException(s);
 throw e; //Presents the s message and the entire program stops
 }

 if (amount <= 0)
 {
 String s = “Withdrawal amount must be greater than 0.”;
 IllegalArgumentException e = new IllegalArgumentException(s);
 throw e; //Presents the s message and the entire program stops
 }
 . . . remainder of code for this method. . .

}

37-2

In the above code we used the exception class, IllegalArgumentException. See Appendix
K for a list of some other exception classes.

Two types of exceptions:

Checked… those that Java requires handling by the programmer. These are typically
 errors over which the programmer has no control. The IOException is a
 classic example.

Mnemonic memory aide: For errors that are out of your control, such as
an IOException due to a corrupt file, etc., Java is extra vigilant and
checks for errors for you.

Unchecked… those that the programmer may or may not handle. These are errors

that are the programmer’s fault. A typical example would be a division by
0 giving an ArithmeticException. Another example would be a
NumberFormatException that might occur when you try to do
Integer.parseInt(m) and the String m can’t convert to an int. (The example
code on the previous page concerned unchecked exceptions.)

Two choices for handling checked exceptions:

Now let’s suppose we have a method that has the potential of throwing a checked
exception. We must handle the exception with one of two choices. Notice that with
checked exceptions, doing nothing is not a choice, it won’t even compile unless you do
one of the following:

1. Handle the exception with try, catch, finally as we will see later in this lesson.

2. Put a throws IOException (or some other appropriate checked exception) tag on the

method signature as in the following example:

public void readTheDisk() throws IOException
{
 … code that uses a file reader…might encounter a corrupt file…
}

So, what’s the purpose of this throws specifier in a method? The purpose is so the
calling-method (the method that called the readTheDisk method) is signaled that an
IOException may occur in readTheDisk and that the calling method is to handle the
exception. Of course, in the calling-method you can make the choice of putting
another throws specifier in its signature, or to actually handle the exception right
there with try, catch, and finally.

Thus, we see that the throws specifier is a way to defer the handling of an exception.
We can keep postponing the actual handling of the exception right up the calling
chain. Of course we can defer it all the way up to the main method and if no try-catch
is there, then the program terminates.

The throws specifier can provide for multiple exceptions as in the following
example:

37-3

public void aMethod(int x) throws IOException, ClassNotFoundException
{

}

We should also mention that unchecked exceptions can also make use of throws to defer
handling of the exception…or you can handle them at any level in the calling chain with
try, catch, and finally. Unchecked exceptions need not be handled at all. You can just let
the program terminate (crash) immediately upon detection of such an error.

Catching exceptions…(referred to above as “handling” the exception):

public class MyClass
{
 public void myMethod(double d)

{
…some code in which you are not
 worried about an exception occurring….

try //if error occurs, rest of code doesn’t execute...jumps to
 //appropriate catch
{
 …some code where you might expect an exception…
 String s = in.nextLine(); //might produce an IOException
 int x = Integer.parseInt(s); //bad s might produce a

 // NumberFormatException
 …more code …
}

catch (IOException e)
{

System.out.println(“Input/output error ” + e);
// Continues execution after last catch below.

}

catch (NumberFormatException e)
{

System.out.println(“Input was not a num ” + e);
// Continues execution immediately after this catch.

}

…code execution continues here after try block is finished…or, if an
exception occurs, execution continues here after catch block finishes…

}

}

37-4

Usage of the finally block: (this block is optional)

try
{ … }

catch(…)
{ … }

finally
{

…This block of code is guaranteed to execute, regardless of whether there was
an exception or not. …This is typically used to release resources, such as
closing a file or releasing a network connection. If an exception occurs in the try
block and none of the catch statements are appropriate to handle the exception,
control passes to this finally block and the code here executes… then the
exception is actually thrown and passed up the calling chain where we can
attempt to catch it.

 Even if a catch block throws an exception of its own, control is still passed to the
 finally block.
}

Designing your own Exception Types:

if (amount > balance)
{
 GoofyException e = new GoofyException(“You made a dumb mistake!”);
 throw e;
}

public class GoofyException extends RuntimeException
{
 public GoofyException() // It is customary to provide a default constructor,
 { // even if empty.

}

public GoofyException(String reason) //Your own constructor
{
 super(reason);
}

}

Some unusual facts concerning exceptions:

1. If you use the following two catch statements, they must go in the order shown…subclass
on the top, superclass on the bottom. (Note that FileNotFound is a subclass of
IOException)

37-5

catch(FileNotFoundException e)
{
 System.out.println("FileNotFound");
}

catch(IOException e)
{
 System.out.println("IOException");
}

In this particular case, if the try block generated a FileNotFoundException, only
“FileNotFound” would be printed. The second catch would be ignored.

2. If you have a method that throws an IOException up to the next level in the calling chain,
we should be aware that in addition to IOException being thrown to the next level, all its
subclasses are also thrown to the next level in the chain.

3. If you put a try inside a block of code (such as those belonging to loops and if

statements), then the corresponding catch statements must also reside in that same block.

4. It is permissible to have try and finally blocks without a catch block.

5. If there is a finally block, there must be at least a try block.

37-6

Exercise for Lesson 37

1. Rewrite the method below so as to consolidate the two error messages (that signal
violation of preconditions) into a single error message.

/*
 * precondition: amount <= balance
 * precondition: amount > 0
 */
 public void withdraw(double amount)
 {
 if (amount > balance)
 {
 String s = “Can’t withdraw more than the balance.”;
 IllegalArgumentException e = new IllegalArgumentException(s);
 throw e; //Presents the s message and the entire program stops
 }

 if (amount <= 0)
 {
 String s = “Withdrawal amount must be greater than 0.”;
 IllegalArgumentException e = new IllegalArgumentException(s);
 throw e; //Presents the s message and the entire program stops
 }
 . . . remainder of code for this method. . .

}

2. Write a method called setStudentScore(). Its signature is:

public void setStudentScore(int score)

You need not worry about the bulk of the code inside this method. Establish some
preconditions on the score parameter and detail those preconditions in rems up above
the signature. Then, just inside the code body, throw an IllegalArgumentException if
the preconditions are not met.

3. In Java we don’t say, “The program generated an error”; rather, we say what?

4. What are the two types of exceptions?

5. Which type of exception requires being handled?

6. What are the two ways to handle checked exceptions?

37-7

7. Is it permissible for unchecked exceptions to be handled with throws or with try-
catch?

8. Give an example of a checked exception and what conditions might cause it.

9. Give an example of a unchecked exception and what conditions might cause it.

10. Modify the following method, so that if an ArithmeticException occurs, the actual

handling of that exception with try-catch is deferred one layer up the calling chain.
public String car(int xs)
{
 …some code that might produce an ArithmeticException…
}

11. Modify the following method, so that if an ArithmeticException occurs, the handling
of that exception with try-catch is handled in this method.

public String car(int xs)
{

 …some code that might produce an ArithmeticException…

}

12. Create your own exception type by creating a class called StuffyException.

13. Write code that will use the above StuffyException class by creating an object with it.

Specify the error “announcement” with “Hey, you messed up” and then throw the
exception.

37-8

Exceptions … Contest Type Problems

1. What is output by the code to the right on
the input below?

 big mamma
 2

A. mamma B. big mamma C. g
 D. i E. big mamma2

2. What is output by the code to the right on
the input below?

 big mamma
 22

A. b B. Error: 22 C. a
 D. Nothing E. None of these

//Assume nextLine() and nextInt() are static methods in
//a class named Scanner that reads a String and an integer
//from the keyboard.

Scanner rdr = new Scanner(System.in);
String str = rdr.nextLine();
int j = rdr.nextInt();

try
{
 System.out.print(str.charAt(j));
}

catch(StringIndexOutOfBoundsException e)
{
 System.out.print(“Error: ” + j);
}

3. Which of the following replaces <*1> in
the code to the right to make it do what the
remarks suggest?

A. prd = 1;
B. return 1;
C. System.exit();
D. No code is needed
E. None of these

4. Assume <*1> has been filled in correctly.
What is returned by product(“two”, “5”)?

A. 10
B. 5
C. 1
D. 2
E. None of these

//Returns the product of two integers represented as
//strings. If either string is not a number, returns the other
//number. If both are not numbers, returns 1.

public static int product(String str1, String str2) {
 int prd = 1;
 try {
 prd*=Integer.parseInt(str1);
 }
 catch(NumberFormatException) {
 <*1>
 }

 try {
 prd*=Integer.parseInt(str2);
 }
 catch(NumberFormatException) {
 <*1>
 }
 return prd;
}

5. What is output by the code to the right if
the static method called test() encounters the
following line of code? Assume the test
signature includes throws
NumberFormatException.

 int j = Integer.parseInt(“Two Thousand”);

A. Nothing
B. Error with number format Error
C. Error with number format
D. Error
E. None of these

try{
 test();
}

catch(NumberFormatException e)
{
 System.out.println(“Error with number format”);
}

catch(RuntimeException e)
{
 System.out.println(“Error”);
}

37-9

6. If the code designated by <*1> to the
right does not throw any exceptions, which
of the remaining code sections will execute?

A. <*2>
B. <*2> and <*3>(if no errors in <*2>)
C. <*3>
D. <*2> and <*3>
E. None of these

try {
 <*1>
}

catch(RunTimeException e) {
 <*2>
}

finally {
 <*3>
}

7. What exceptions thrown by method
mental() are passed up the calling chain?

A. All exceptions
B. IOException
C. IOException, its subclasses, and
 unchecked exceptions
D. IOException and its subclasses
E. None of these

public static void mental() throws IOException {
 // code not shown
}

8. Suppose the main method does not include
a try or catch. Futhermore, the code which
inputs disk values may throw an
IOException. Which of these should replace
<*1> in the code to the right?

A. throws IOException
B. throw IOException
C. throws new IOException
D. extends IOException
E. None of these

public static void main(String[] args) <*1>
{
 // input some values from disk
}

9. Which of these is not a keyword in Java?

 A. short B. continue C. finally D. final E. None of these

37-10

Project… Keep Trying

Create a new project called ExceptionsProjects that will contain two classes, Tester and
FileInput. Create the FileInput class by modifying your BaseClass (see Lesson 27) project as
follows:

import java.io.*; //necessary for File and IOException
import java.util.*; //necessary for Scanner
public class FileInput
{

 public static void readTheFile(String fileName) throws IOException
 {
 Scanner sf = new Scanner(new File("C:\\temp_Name\\" + fileName));

 int maxIndx = -1; //-1 so when we increment below, the first index is 0
 String text[] = new String[100]; //declare more than we need

 while(sf.hasNext())
 {
 maxIndx++;
 text[maxIndx] = sf.nextLine();
 }
 //maxIndx is now the highest index of text[], = -1 if no lines of text.
 sf.close(); //we opened file so we must close it

 for (int j = 0; j <= maxIndx; j++)
 {
 System.out.println(text[j]);
 }
 }

}

Now create a Tester class with a main method in which you repeatedly loop while inputting a file
name from the keyboard. Also, inside the loop call the readTheFile method of the FileInput class
and pass the file name input from the keyboard as a parameter. Set up a try-catch pair in main so
as to keep looping if readTheFile passes an IOException up the calling chain. If everything in
readTheFile completes successfully, then in main release from the loop and output “It worked.”

Provide for an escape from the loop by informing the user that he can enter the word “exit”. This
should provide a release from the loop and print “It did not work”.

38-1

Lesson 38…..Interfaces

There are basically two viewpoints when considering interfaces in Java:

The implementation viewpoint:

Consider the following superclass:

public abstract class Parent
{
 public abstract void method1();
 public abstract void method2();
 public abstract int method3(double d);
}

…and now the subclass:

public class Child extends Parent
{
 public void method1()
 { //some code…}

 public void method2()
 { //some code…}

 public int method3(double c)
 { //some code…}

 public int statevar1;
}

**
Notice that the above superclass does absolutely nothing. All methods there are abstract.
Also, there are no state variables. All it does is force us to implement its methods in the
subclass. If this is all a particular superclass does, then it could be equivalently replaced
with an interface. Alter the Parent class by converting it to an interface as follows:

public interface Parent
{
 void method1(); //notice the semicolons at the ends of these signatures
 void method2();
 int method3(double d);
}

Notice that with the methods above it would be legal to start their signatures with public
abstract; however, even if we leave them off, they are automatically public and
abstract…all because this is an interface. It is conventional in interfaces not to use
public and abstract in the signatures.

Now adjust the subclass as follows:

38-2

public class Child implements Parent
{
 public void method1()
 { //some code…}

 public void method2()
 { //some code…}

 public int method3(double c)
 { //some code…}

 … some other methods…

 public int statevar1;
}

Notice that all the interface does here is to force us to implement those methods in the
subclass…..big deal. (Actually it’s a very big deal. Take a look at a short essay presented
in Appendix L for four compelling reasons to use interfaces.) The Child class above will
refuse to compile until all methods in the Parent interface have been implemented in
Child.

The object viewpoint:

Expect to eventually make an object out of the following interface…you probably
thought we could only make objects out of classes! This interface describes some of the
methods found in a robot related class. As with the previous viewpoint on interfaces, this
one will also force other classes implementing RobotArm to provide code for each of
these methods (i.e. to implement the methods):

public interface RobotArm
{
 void moveUp(double rate, double howFar);
 void moveDown(double rate, double howFar);
 void twistLeft(double deg);
 void twistRight(double deg);
}

What we really want to look at here is how the Robot interface provides the “glue” that
holds together several cooperating classes, specifically two different industrial robots
supplied by two different robot manufacturers. They are the Lexmar 234 and the General
Robotics 56A.

Let’s suppose we have two classes (Lexmar234 and GR56A) that each implement
RobotArm:

//The implemented methods give detailed instructions on how to manipulate the
//“arm” of this particular robot.
public class Lexmar234 implements RobotArm

38-3
{
 public Lexmar234() { Constructor}
 public void moveUp(double rate, double howFar) { //some code }
 public void moveDown(double rate, double howFar) { //some code }
 public void twistLeft(double deg) { //some code }

public void twistRight(double deg) { //some code }
}

public class GR56A implements RobotArm
{
 public GR56A() { Constructor}
 public void moveUp(double rate, double howFar) { //some code, different

from above }
 public void moveDown(double rate, double howFar) {//some code,

different from above}
 public void twistLeft(double deg) { //some code, different from above }

public void twistRight(double deg) { //some code, different from above }
}

So far, this is no different from the implementation viewpoint we previously discussed.
In other words, the interface forces us to write code for those methods in classes where
we specifically say implements RobotArm.

Now let’s find out what’s different about the object viewpoint of interfaces. We will look
at a Tester class with a main method in which we will create objects from the RobotArm
interface.

public class Tester
{
 public static void main(String[] args)
 {
 RobotArm lx = new Lexmar234();
 RobotArm gr = new GR56A();

 // Do something with the Lexmar robot
 lx.moveDown(3, 27.87);
 lx.twistRight(22.0);

 // Do something with General Robotics machine
 gr.moveUp(16.1, -23.19);
 gr.twistLeft(18);
 }
}

It is significant that nowhere in the above class did we say implements in the code. Also,
notice, for example, that when we declare

RobotArm lx = new Lexmar234();

that lx is of type RobotArm even though RobotArm is not a class; it’s just an interface!
This is specified by the left side of the above statement, and it means that lx can only use

38-4

 methods given in the RobotArm interface. The object lx will use these methods as
implemented in the Lexmar234 class. Notice this is specified on the right side of the
above statement.

Important generalization:
All this brings us to an important generalization about classes and interfaces as illustrated
in Fig 38-1.

<class, superclass, or interface name> objectName = new <class or subclass name()>;

This tells us where the methods are implemented
that we are to use (including the constructor(s)).

This specifies the object type and
what methods the object can use.

 Fig. 38-1 Determining object type, legal methods, and where the methods are implemented.
 If a method in the subclass overrides that of the superclass, then code in the subclass runs.

Miscellaneous facts concerning interfaces and implementations:

1. instanceof as applied to the example on the previous page:

 (gr instanceof RobotArm) returns a true, and

 (gr instanceof GR56A) also returns a true.

Notice that the syntax is anObject instanceof ClassOrInterface and that it returns a
boolean.

2. Polymorphism is the property of being able to have methods named the same, while

having possibly different implementations. For example, twistLeft is a method in both
the Lexmar234 and GR56A classes above, yet the implementations would likely be
radically different because the two different manufacturers of these robots probably
control their machines differently.

3. Saying that a class realizes an interface is the same as saying that it implements that

interface.

4. It is possible to simultaneously extend another class and implement an interface. It is
possible for a particular class to only extend a single class; however, it can implement as
many interfaces as desired. Below, we show the Redwood class extending the Tree class
and implementing both the Limb and Leaf interfaces.

public class Redwood extends Tree implements Limb, Leaf
{
 //code not shown
}

 Notice that when simultaneously extending and implementing, extends must come first.

38-5

Exercise for Lesson 38

public interface Sports
{
 void method1();
 void method2();
 int method3(double d);
}

public class Baseball implements Sports
{

public Baseball()
 { . . . }

 public void method1()
 { //some code…}

 public void method2()
 { //some code…}

 public int method3(double c)
 { //some code…}

 public int statevar1;
}

public class Football implements Sports
{
 public Football()
 { . . . }
 public void method1()
 { //some code…}

 public void method2()
 { //some code…}

 public int method3(double c)
 { //some code…}

 public int statevar1;
}

public class Tester
{

public static void main(String[] args)
 {
 Sports x = new Baseball();
 Sports y = new Football();

38-6

 x.method2();
 y.method2();

 . . . more code . . .
 }
}

Use the above code in the following questions:

1. Which methods, if any, in the Sports interface are abstract?

2. public class Hockey implements Sports

{
 //What methods, if any, must we implement here?
}

3. Look at the classes Baseball and Football. Both implement method1. Do both
implementations have to have identical code? If so, why?

4. In the “more code” section of Tester what would the following return?

(x instanceof Sports)

5. In the “more code” section of Tester what would the following return?

(y instanceof Football)

6. The property of two classes being able to have methods of the same name (but with
possibly different implementations) is known as .

7. Modify the following class so that it will simultaneously inherit the Red class and

implement both the Eagle and Bobcat interfaces.

public class Austria
{
 . . .
}

38-7

Interfaces…Contest Type Problems

1. What replaces <*1> so that VectorManip
simultaneously implements the Vector interface
and inherits the Tensor class?

A. implements Vector extends Tensor
B. implements Tensor extends Vector
C. extends Tensor implements Vector
D. extends Vector implements Tensor
E. None of these

2. Assuming <*1> has been filled in correctly,
which of the following is of correct syntax and is
true if the object vm is created by:

 VectorManip vm = new VectorManip(b);

A. vm instanceof VectorManip
B. vm instanceof Vector
C. VectorManip instanceof vm
D. Vector instanceof vm
E. More than one of these

3. Assuming <*1> has been filled in
correctly, which of the following is true if v1 is
created by:

 Vector v1 = new VectorManip(b);

A. v1 can use all the methods in the
VectorManip class

B. The syntax is incorrect
C. v1 is a VectorManip object
D. v1 is a Vector object
E. None of these

4. Assuming <*1> has been filled in correctly,
which of the following is true if the crossProduct
method is omitted from the VectorManip class?

A. VectorManip won’t compile
B. Omitting crossProduct is completely

legal
C. Omitting crossProduct would be

completely legal if VectorManip did not
implement Vector

D. Both A and C
E. None of these

public interface Vector
{

double dotProduct(double b[]);
double[] crossProduct(double b[]);
double absoluteValue(double b[]);

}

public class VectorManip <*1>
{

public VectorManip(double v[])
{

iComp = v[0];
jComp = v[1];
kComp = v[2];

}

public double dotProduct(double b[])
{ …code not shown … }

public double[] crossProduct(double b[])
{ …code not shown … }

public double absoluteValue(double b[])
{ …code not shown … }

public double[] sum(double b[])
{ …code not shown … }

private double iComp;
private double jComp;
private double kComp;

}

5. Saying that Jackson realizes the President interface is the same as saying which of the
following?

 A. Jackson inherits President B. Jackson implements President
 C. President extends Jackson D. President implements Jackson
 E. None of these

38-8

Project… Linear Function

You are a software engineer with the Blue Pelican Engineering Corporation. Your immediate
supervisor has need of a class called LinearFunction and she knows exactly the methods that it
needs to include. Not having time to write it herself, she assigns the job to you. To insure that
you produce exactly the methods she wants, she is providing the interface below and requiring
that you implement this interface in the LinearFunction class you produce. When your project is
complete, she will simply look at your class signature and if she sees implements
LinearFunctionMethods, she will know for certain that you have implemented all the methods
she originally specified in the interface; otherwise, your code would not compile.

public interface LinearFunctionMethods
{
 double getSlope();
 double getYintercept();
 double getRoot();

 double getYvalue(double x); //return the y value corresponding to x
 double getXvalue(double y); //return the x value corresponding to y
}

For simplicity we will assume that the linear function’s graph can never be vertical or horizontal.
(This eliminates some complications with the math). In writing your methods, simply recall the y
= mx + b portion of your algebra studies. The constructor of your class should allow you to pass
the slope (m) and y-intercept(b) of the LinearFunction object you are instantiating.

 **

Test your LinearFunction class with the Tester class below:

import java.io.*;
import java.util.*;
public class Tester
{

 public static void main(String args[])
 {
 Scanner kbReader = new Scanner(System.in);

 System.out.print("What is the slope of your line? ");
 double slope = kbReader.nextDouble();

 System.out.print("What is the y-intercept of your line? ");
 double yIntc = kbReader.nextDouble();

 LinearFunction line = new LinearFunction(slope, yIntc);

 System.out.println("\nSlope of this line is: " + line.getSlope());

 System.out.println("Y-intercept of this line is: " + line.getYintercept());

38-9

 System.out.println("Root of this line is: " + line.getRoot());

 System.out.print("\nWhat is an x value for which you wish to solve for y? ");
 double x = kbReader.nextDouble();
 double yValue = line.getYvalue(x);
 System.out.println("The y value corresponding to x = " + x + " is " + yValue);

 System.out.print("\nWhat is a y value for which you wish to solve for x? ");
 double y = kbReader.nextDouble();
 double xValue = line.getXvalue(y);
 System.out.println("The x value corresponding to y = " + y + " is " + xValue);
 }

}

Below is a typical run:

 What is the slope of your line? -3
 What is the y-intercept of your line? 2.5

 Slope of this line is: -3.0
 Y-intercept of this line is: 2.5
 Root of this line is: 0.8333333333333334

 What is an x value for which you wish to solve for y? -4.61
 The y value corresponding to x = -4.61 is 16.330000000000002

 What is a y value for which you wish to solve for x? 5.0
 The x value corresponding to y = 5.0 is -0.833333333333334

This completes our study of interfaces. At this point many students often complain that
they “just don’t see why we need interfaces.” If this is the case with you, please read the
essay presented in Appendix L and you should come away convinced of the usefulness of
interfaces.

39-1

Lesson 39….. Complexity Analysis (Big O)

Two types of complexity analysis:

Complexity analysis takes two forms. One form analyzes how many steps an algorithm
takes to run… ultimately this means the time that it takes to run. The other type of
complexity analysis has to do with how much space (in bytes) it takes to run the
algorithm. With memory so abundant and inexpensive today, space analysis is not as
important as it once was. We will confine our studies here to the time-analysis variety.

Introducing Big O:

Consider the following algorithm:

 for(int j = 0; j < n; j++)

{…some code, no loops }

How many times do we go through the loop? The answer is n, of course, so we say that
the time complexity is of the order of n. A short-hand equivalent is written as O(n). This
is known as Big O notation. Another valuable way to look at this is that the time it takes
to run this algorithm is approximately proportional to n. The larger n is, the better the
approximation. This is true of all Big O values.

A variety of Big O problems:

Now, let’s look at some other specific examples and obtain Big O values for each.

Example 1:
for(j = 0; j < n; j++)
{
 for(k = 0; k < n; k++)
 { …some code… }
}
We go through the outer loop n times and for each of these iterations we go through
the inner loop n times. The code designated as “…some code…” is executed n2 times
so we assign a Big O value of O(n2) to this algorithm.

Example 2:

for(j = 0; j < (n +50); j++)
{
 for(k = 0; k < n; k++)
 { …some code… }
}
We go through the outer loop n + 50 times and for each of these iterations we go
through the inner loop n times. The code designated as “…some code…” is therefore
executed
(n + 50)n = n2 + 50n times. Recalling that Big O notation is an approximation for
only very large n, we realize that 50n pales in comparison to n2 so we keep only the
part with the highest exponent. Finally, we assign a Big O value of O(n2) to this
algorithm.

Example 3:

for(j = 0; j < n ; j++)

39-2
{
 for(k = 0; k < (22 * n); k++)
 { …some code… }
}
We go through the outer loop n times and for each of these iterations we go through
the inner loop 22n times. The code designated as “…some code…” is therefore
executed n(22n) = 22n2 times. In Big O notation we ignore all coefficients, no matter
their size, and assign a Big O value of O(n2) to this algorithm.

Example 4…Suppose by a time complexity analysis, we obtain (3/5)n3 + 15n2 + (1/2)n
+5, the corresponding Big O value would just simply be O(n3), since we ignore all
coefficients and use only the term with the highest exponent.

Example 5:

public static int[] addStuff(int x[][])
{

int row, col;
int b[] = new int[x.length];
for(row =0; row < x.length; row++)
{

 for(col= 0; col < x[row].length; col++)
{

 b[row] += x[row][col];
}

}
return b;

}

Yes, this one is a bit more complicated than the previous ones. Let’s assume we call
this method with the following code:

 int dfg[][] = { {1,2,…},
 {0,4,…},

 … }; //Assume this array has r rows and c columns for a
 int newArray[] = addStuff(dfg); //total of rc = n elements

Studying the addStuff method, we note that we go through the outer loop x.length
times which is the number of rows, r. For the inner loop we go through x[row].length
which is the number of columns, c. Therefore, the total number of times through the
code in the inner loop is rc, which in turn is just the number of elements in the entire
matrix, n. We can write the Big O value as either O(rc) or O(n).

Example 6:

for(j = 0; j < n; j+=5)
for(k =1; k < n; k*=3)
{ …some code… }

We go through the outer loop (1 / 5)n times and log3(n) times through the inner loop
for a total of (1 / 5)n log3(n). The final Big O value is O(n log(n)). Notice that we
have dropped the coefficient of 1 / 5 as is the custom with Big O. Also, we have

39-3

dropped the base 3 on the log since all logs of the same quantity (but with various
bases) differ from each other only by a mulplicative constant.

Example 7:

m = -9;
for(j = 0; j < n; j+=5)
{
 … some code …

if (j < m)
 {

for(k =0; k < n; k*=3)
{… some code…}

 }
}

We go through the outer loop n/5 times and because j will never be less than m, we
never go through the inner loop. Thus the Big O value is O(n).

Example 8:
for(j = 0; j < n; j++)
{
 for(k = j; k < n; k++)
 { …some code… }
}

On the first iteration of the outer loop, the inner loop iterates n times. On the second
iteration of the outer loop, the inner loop iterates n – 1 times. On the third iteration of
the outer loop, the inner loop iterates n - 2 times. This continues until the last iteration
of the outer loop results in n – (n –1) iterations of the inner loop. Adding these we get
 n + (n – 1) + (n – 2) + … + (n – (n –1))
Since the outer loop iterated n times we know there are n terms here. Simplifying, we
get n(n –1) + constant = n2 – n + constant. The Big O value is therefore, O(n2).

Example 9:… Consider a sequential search (sometimes called a linear search) through
an unordered list looking for a particular item. On the average we will need to search
halfway through before we find the item. So, on the average, the Big O value should
be O(n /2). Again, we drop the coefficient and get O(n).

Example 10:… Consider a binary search on an ordered list. In fact, a binary search can

only be done on an ordered list since this type of search works as follows. In the
beginning we go halfway down the ordered list and ask, “Is this the item? If not, is
the item above or below this point?” Then we take that indicated half of the list and
cut it in half. The process repeats until we eventually find the item. Since we
repeatedly cut the list by a factor of two, the run time is proportional to log2(n) when
n is the number of elements in the original list. We drop the base and write O(log(n)).

Example 11:… When we have just a simple block of code with no repetition, the Big O

value is O(1). Consider the following block of code that yields a Big O value of O(1):

39-4

 x = 3 * Math.pow(p,2.1);
 y = 46.1 * q/2.3;
 d = Math.sqrt(Math.pow((x –x1),2) + Math.pow((y –x1),2));

Example 12:… This example spotlights the pitfall of excessive dependence on shortcuts.
Consider the Big O value for the following code:

public int doStuff(int n)
{
 int sum = 0;
 for(int j = n; j > 0; j /= 2)

{
 for(int k = 0; k < j; k++)
 {
 sum += (2 * k * j) % n;
 }

}
}

At first glance, the outer loop would seem to yield O(log2(n)) according to shortcuts
presented earlier. The inner loop is a bit of a mystery; however, most students would
probably guess O(n). Putting these together and ignoring the base of the logarithm
would yield a final value of O(n log(n)). Unfortunately, this is not the answer.

Let’s go back to basics and forget about the shortcuts. The problem with the above
analysis is the inner loop. To properly analyze this code, look at the first iteration of
the outer loop and determine how many iterations there are of the inner loop. There
are n iterations:

 n

On the second iteration of the outer loop j = n/2, so there are n/2 iterations of the
inner loop:

 n + n/2

On each successive iteration of the outer loop, j is half of its value on the previous
iteration (and hence the number of iterations of the inner loop), so we have:

 n + n/2 + n/4 + n/8 + … + 1

Searching for a simpler way to express this sum, we notice that this is a geometric
series whose sum is given by the well known formula, (firstTerm – r * lastTerm)/(1 –
r) where r is the common ratio (1⁄2 for this problem). So, our sum reduces to
(n – 1⁄2 * 1)/(1 – 1⁄2) which, in turn algebraically simplifies to 2n – 1.

As per the conventions of time complexity analysis, drop the -1 and the coefficient of
2 to get a final value of O(n).

39-5
Calculating run times:

 Example 1:
Suppose a certain algorithm has a Big O value of O(n2) and that when n = 1000
the run time is 19 sec. What will be he run time if n = 10,000?

We set up a proportion as follows:

 10002 /19 = 100002 / T

 (103)2 / 19 = (104)2 / T

 106 / 19 = 108 / T , cross multiply to get
 T(106) = 19(108)
 T = 1900

Example 2:

Sometimes questions are worded such that we are looking for a ratio as in this
problem. …Suppose a certain algorithm has a Big O value of O(n3). How many times
slower is this algorithm when n = 1500 as compared to n = 500?

 We set up a proportion as follows:
 5003 / T1 = 15003 / T2 , cross multiply and rearrange things so as

 to solve for the ratio T2 / T1

 T2 / T1 = 15003 / 5003

 T2 / T1 = (1500 / 500)3

 T2 / T1 = (3)3

 T2 / T1 = 27, so the answer is that it’s 27 times slower.

Example 3:

Consider the following table in which the number of times that a block of code
executes is contrasted with the time it takes to run.

Number (n) of
times to execute
a block of code

Time(sec)

500 3
1000 24
1500 81

 Table 39-1

What Big O value is represented by the data in
this table?

When n doubles (going from 500 to 1000) the time is multiplied by 8. Since 23 is
eight we conclude that the Big O value should be n3. This is consistent with a
comparison of the first and last rows of the table above. There, we notice that in
tripling n when moving from an n value of 500 to 1500, that the time is multiplied by
27 (3 * 27 = 81). Since 33 is 27, we are, once again, led to n3.

From fastest to slowest:

In summary, we will state what should be obvious by now. We will list in order, Big O
values with the most efficient time-wise (fastest) at the top and the slowest at the bottom.

39-6
 O(log n)

 O(n)
 O(n log n)
 O(n2)
 O(n3)
 O(2n)

Using graphs to compare Big O values:

Let’s compare just two of the Big O values above so we can get a sense of why one is
better than the other. In Fig. 39-1 below we will compare O(log n) and O(n).

n2 nt

T2

n1

e

.

.
T1

)

Fig 39-1 Comparison of

For a particular value of n (n1, fo
run time of T1 while n1 correspo
desired, so the O(log n) curve is

Beware of false statements:

When comparing Big O values,
following:

 An algorithm with a Big

Big O value of O(n).

This is generally a false stateme
indeed, be faster than O(n); how
For Fig 39-1 above this “transiti
You would need to know specifi
particular value of n. It is interes
above, that the O(n) curve actua

The moral of all this is that Big O
and are mostly useful for relativ
by what factor the run time incre

O(n
Tim
O(log n)
n

O(n) and O(log n)

r example) notice that O(log n) gives a corresponding
nds to T2 on the O(n) curve. A smaller run time is
superior for n1 (and all values of n higher than nt).

we must be careful in assuming something like the

O value of O(log n) will always be faster than one with a

nt. For some values of n (large ones) O(log n) will,
ever, we do not generally know this “transition” nt value.
on” nt value occurs at the intersection point of the curves.
c details of each to know which is faster for any
ting to note that for the n value of n2 in the drawing
lly represents the fastest time.

 values are generally only valid for large values of n
e comparisons (For example, using O(n2) to determine
ases when going from n = 103 to n = 105).

39-7
Best case, average case, worst case:

Some algorithms, especially sorting routines discussed in Lesson 41, have special
circumstances in which they perform very poorly and sometimes very well. These are
assigned “worst case” and “best case” Big O values.

Occasionally, “best case” is referred to as the most restrictive or fastest executing case.
Similarly, “worst case” is referred to as the least restrictive or slowest executing case.

Exercise on Lesson 39

1. What is the Big O value for a sequential search on an unordered list?

2. What requirement must we impose on a list before we can apply a binary search to it?

3. What is the time complexity order of a binary search on an ordered list?

4. Suppose an algorithm with a Big O value of O(n2) has a runtime of 20 sec for n = 5000.
What will be the runtime for n = 1000?

5. for(j = 0;j < n + 5; j++)

{
 …some code…
}

 What is the Big O value?

6. for(j = 0;j < n + 5; j++)
for(k = 0; k < n; k+=8)
 for(z = 0; z <= (n*n); z++)
 { …some code… }

 What is the Big O value?

7. for(j = 0;j < n - 5; j++)
{
 for(k = 0; k < 7; k++)
 { …some code… }
}
What is the Big O value?

8. for(j = 2; j < n + 5; j*=7)
{
 …some code…

 }
 What is the Big O value?

9. There are two types of complexity analysis. What two things can be analyzed?

10. Which of these two types does Big O address?

39-8

11. Suppose a time complexity analysis yields 5000n2 + (1/1000) n3 + n – 2. What would be
the Big O value?

12. Will a O(n) algorithm generally always win in a time-race over a O(n3) algorithm?

13. Which is generally the fastest for large n, O(log n) or O(2n)?

14. An algorithm has a time complexity of the order 2n. How many times more slowly would

this algorithm run when n= 200, as compared to n = 100?

15. for(j = 0 ;j < n - 5; j++)
{
 for(k = 0; k < n; k++)
 { …some code… }
}
What is the Big O value?

16. for(j = 0 ;j < n; j++)
{
 for(k = j; k < n; k++)
 { …some code… }
}
What is the Big O value?

17. From the following table, determine the time complexity of the algorithm.

Number of times to
execute a block of
code

Time(sec)

1000 5
2000 20
4000 80

18. From the following table, determine the time complexity of the algorithm.

Number of times to
execute a block of code

Time(sec)

1000 5
2000 10
6000 30

39-9
Big O… Contest Type Problems

1. Which of the following would generally indicate the fastest algorithm for large n?

 A. O(n2) B. O(n log n) C. O(n) D. O(log n) E. Need more info

2. What is the order of the time complexity of
calling the method, doIt(tam). Assume that tam is
a double array with m rows.

A. O(m)
B. O(m2)
C. O(log m)
D. O(sum + m)
E. None of these

public double doIt(double vc[])
{
 int k = vc[0];
 int sum = 0;
 for(int p=0; p<vc.length; p++)
 for(q=0; q<vc.length; q++, k--)
 {
 sum+= k + vc[q] + p;
 }
 return sum;
}

3. For the algorithm represented in the table to
the right, what would be the corresponding Big O
value?

A. O(n)
B. O(n2)
C. O(n3)
D. O(log n)
E. None of these

Number of times to
execute a block of
code

Time required to
run (sec)

1000 2
2000 16
3000 54

4. Which of the following most closely represents
the time order complexity of the following call to
the method to the right? (Assume all rows have
equal length in the gryLion array.)

 . . .
 m = gryLion.length;
 n = gryLion[0].length;
 int apro[] = pooch(gryLion);

A. O(mn)
B. O(m2)
C. O(n2)
D. O(m2n2)
E. None of these

public static int[] pooch(int zzTop[][])
{
 int row, col;
 int barb[] = new int[zzTop.length];
 for(k =0; k < zzTop.length; k++)
 {
 for(j=0; j < zzTop[k].length; j++)
 {

barb[k] += k * k + zzTop[k][j];
 }
 }
 return barb;
}

5. What is the Big O value for the code to the
right?

A. O(n/2 log d)
B. O(log (nd))
C. O(d log n)
D. O(n log d)
E. None of these

for(j = 0; j < n; j+=2)
 for(k =0; k < d; k = k * 8)
 { …some code… }

40-1

Lesson 40… Recursion

What is recursion?

Software recursion, very simply, is the process of a method calling itself. This at first
seems very baffling…somewhat like a snake swallowing its own tail. Would the snake
eventually disappear?

The classical factorial problem:

We will begin with the classical problem of finding the factorial of a number. First, let us
define what is meant by “factorial”. Three factorial is written as 3!, Four factorial is
written as 4!, etc. But what, exactly, do they mean? Actually, the meaning is quite simple
as the following demonstrates:

 3! = 3 * 2 * 1 = 6
 4! = 4 * 3 * 2 * 1 = 24

The only weird thing about factorials is that we define 0! = 1. There is nothing to
“understand” about 0! = 1. It’s a definition, so just accept it.

Here is an iterative approach to calculating 4!.
 int answer = 1;
 for(int j = 1; j <= 4; j++)
 {
 answer = answer * j;

}
System.out.println(answer); //24

Before we present the recursive way of calculating a factorial, we need to
understand one more thing about factorials. Consider 6!.

 6! = 6 * 5 * 4 * 3 * 2 * 1 = 6 * (5 * 4 * 3 * 2 * 1)

We recognize that the parenthesis could be rewritten as 5!, so 6! could be
rewritten as

 6! = 6 * (5!)

In general we can write n! = n(n –1)!. It is this formula that we will use in our
recursive code as follows:

 public static int factorial(int n)
 {
 if(n = = 1)
 { return 1; }

else
{ return n * factorial(n – 1); //notice we call factorial here }

}

Call this code with System.out.println(factorial(4)); //24

40-2

What really happens when the method calls itself? To understand this, we should pretend
there are several copies of the factorial method. If it helps, you can think of the next one
that is called as being named factorial1, and the next factorial2, etc. Actually, we need
not pretend. This is very close to what really takes place. Analyzing the problem in this
way, the last factorial method in this “chain” returns 1. The next to the last one returns 2,
the next 3, and finally 4. These are all multiplied so the answer is 1 * 2 * 3 * 4 = 24.

Short cuts:

Let’s look at some recursion examples using short cuts. For each problem, see if you can
understand the pattern of how the answer (in bold print) was obtained.

1. System.out.println(adder(7)); // 46

public static int adder(int n)
{
 if (n<=0)
 return 30;
 else
 return n + adder(n-2);
}

On the first call to adder, n is 7, and on the second call it’s 5 (7 - 2), etc. Notice
that in the return portion of the code that each n is added to the next one in the
sequence of calls to adder. Finally, when the n parameter coming into adder gets
to 0 or less, the returned value is 30. Thus, we have:

 7 + 5 + 3 + 1 + 30 = 46

2. System.out.println(nertz(5)); // 120

public static int nertz(int n)
{
 if (n = = 1)
 return 1;
 else
 return n * nertz(n-1);
}

On the first call to nertz, n is 5, and on the second call it’s 4 (obtained with 5 - 1),
etc. Notice that in the return portion of the code that each n is multiplied times
the next one in the sequence of calls to nertz. Finally, when the n parameter
coming into adder gets to 1, the returned value is 1. Thus, we have:

 5 * 4 * 3 * 2 * 1 = 120

3. System.out.println(nrd(0)); // 25

40-3

public static int nrd(int n)
{
 if (n > 6)
 return n - 3;
 else
 return n + nrd(n +1);
}

On the first call to nrd, n is 0, and on the second call it’s 1 (obtained with 0 + 1),
etc. Notice that in the return portion of the code that each n is added to the next
one in the sequence of calls to nrd. Finally, when the n parameter coming into
adder gets above 6, the returned value is n – 3 (obtained with 7 – 3 = 4). Thus,
we have:

 0 + 1 + 2 + 3 + 4 + 5 + 6 + 4 = 25

4. System.out.println(festus(0)); // 12

public static int festus(int n)
{
 if (n > 6)
 return n - 3;
 else
 {
 n = n * 2;
 return n + festus(n + 1);
 }
}

On the first call to festus, n is 0 (and is modified to 0*2 = 0), and on the second
call it’s 1 (0 + 1 = 1, but quickly modified to 1 * 2 = 2), etc. Notice that in the
return portion of the code that each modified n is added to the next one in the
sequence of calls to festus. Finally, when the n parameter coming into festus gets
above 6, the returned value is n – 3 (7 – 3 = 4). Thus, we have:

0 + 2 + 6 + 4 = 12

5. What is displayed by homer(9); ? 1,2,4,9

public static void homer(int n)
{

if (n <= 1)
 System.out.print(n);
else
{
 homer(n / 2);
 System.out.print(“,” + n);
}

}

40-4

Notice on this method that we successively pass in these values of n.
 9 4 2 1
Nothing is printed until the last time when we are down to a 1. Then we start
coming back up the calling chain and printing.

6. What is displayed by method1(7); ? 1,3,5,7

public static void method1(int n)
{

if (n <= 1)
 System.out.print(n);
else
{
 method1(n-2);
 System.out.print(“,” + n);
}

}

7. In this problem we will generate the Fibonacci sequence. This important sequence
is found in nature and begins as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

We notice that beginning with the third term, each term is the sum of the
preceding two. Recursively, we can define the sequence as follows:

 fibonacci(0) = 0
 fibonacci(1) = 1
 fibonacci(n) = fibonacci(n - 1) + fibonacci(n -2)

Using these three lines, we can write a recursive method to find the kth term of
this sequence with the call, System.out.println(fib(k)); :

 public static int fib(int n)
 {
 if (n = = 0)
 {
 return 0;
 }
 else if(n = = 1)

{
 return 1;

}
 else
 {
 return fib(n – 1) + fib(n – 2);
 }
 }

40-5

8. Let’s try one similar to #7. What is returned by pls(4); ? 85

 public static int pls(int n)
 {
 if (n = = 0)
 {
 return 5;
 }
 else if (n = = 1)
 {
 return 11;
 }
 else
 {
 return pls(n - 1) + 2 * pls(n - 2);
 }
 }

The way we approach this is to just build the sequence from the rules we see
expressed in the code. Term 0 has a value of 5 and term 1 has a value of 11.

Term number 0 1 2 3 4
Value 5 11

How will we get term 2? Well, the rule in the code says it’s the previous term plus
twice the term before that. That gives us 11 + 2*5 = 21. Continue this to obtain
the other terms.

Term number 0 1 2 3 4
Value 5 11 21 43 85

9. We are going to use these same ideas to easily work the next problem that in the

beginning just looks hopelessly complicated.

public void f(int z)
{
 if(z = = 0)

{
 System.out.print(“x”);

}
else
{
 System.out.print(“{”);

f(z-1);
System.out.print(“}”);

}
}

Let’s begin analyzing this by observing the output of f(0). It simply prints an “x”.

40-6

Term number 0 1 2 3
Value x

Now, what about f(1)? It first prints a “{” followed by f(z-1). But f(z-1) is simply
the previous term, and we already know that it’s an “x”. A “}” follows. So our 2nd
term is “{x}”.

Term number 0 1 2 3
Value x {x}

Similarly, each subsequent term is the previous term sandwiched in between “{”
and “}” and so we have:

 Term number 0 1 2 3

Value x {x} {{x}} {{{x}}}

 So, if we are asked for f(3) the answer is {{{x}}}.

10. What is returned by g(6, 2)?

public static void g(int x, int y)
{
 if (x/y != 0)
 {
 g(x/y, y);
 }
 System.out.print(x / y + 1);
}

To analyze this problem the following pairs will represent the parameters on
subsequent recursive calls to g. Under each pair is what’s printed.

6, 2 3, 2 1, 2
4 2 1

Realizing that we don’t print until we reach the end of the calling chain, we see
that 124 is printed as we “back-out” of the chain.

40-7

Exercises on Lesson 40

In each of the following recursion problems, state what’s printed.

1. System.out.println(rig(4));

 public static int rig(int n)
 {
 if ((n = = 0))
 {
 return 5;
 }

else if (n = = 1)
{
 return 8;
}

 else
 {
 return rig(n – 1) - rig(n – 2);
 }
 }

2. System.out.println(mm(6));

public static int mm(int n)
{
 if (n<=0)
 return 10;
 else
 return n + mm(n-1);
}

3. System.out.println(adrml(5));

public static int adrml(int n)
{
 if (n<=1)
 return n;
 else
 return n * adrml(n-2);
}

4. System.out.println(bud(1));

40-8

public static int bud(int n)
{
 if (n>5)
 return n - 2;
 else
 return n + bud(n +1);
}

5. System.out.println(zing(0));

public static int zing(int n)
{
 if (n > 10)
 return n - 2;
 else
 {
 n = n * 3;
 return n + zing(n + 2);
 }
}

6. crch(12);

public static void crch(int n)
{

if (n <= 0)
 System.out.print(n);
else
{
 crch(n / 3);
 System.out.print(“,” + n);
}

}

7. elvis(11);

public static void elvis(int n)
{

if (n <= 3)
 System.out.print(n + 1);
else
{
 elvis(n-3);
 System.out.print(“>>” + (n – 1));
}

}

40-9

8. sal(5);

public static int sal(int n)
{
 if (n = = 2)
 { return 100; }
 else if (n = = 3)
 { return 200; }
 else
 {
 return (2 * sal(n - 1) + sal(n - 2) + 1);
 }
}

9. puf(4);

public static void puf(int n)
{

if(n = = 1)
{ System.out.print(“x”); }
else if(n%2 = = 0) //n is even
{

System.out.print(“{”);
puf(n-1);
System.out.print(“}”);

}
 else //n is odd
 {

System.out.print(“<”);
puf(n-1);
System.out.print(“>”);

}
}

10. bc(6, 2);

public static void bc(int p, int q)
{

 if (p/q = = 0)
 {
 System.out.println(p + q + 1);
 }
else
{

System.out.println(p);
 bc(p/q, q);

}
}

40-10

Project… Fibonacci

You are to write a recursion routine to generate the kth term of a “modified” Fibonacci sequence.
Our modified sequence will be defined as follows:

modFibonacci(0) = 3
modFibonacci(1) = 5
modFibonacci(2) = 8
modFibonacci(n) = modFibonacci(n - 1) + modFibonacci(n -2) + modFibonacci(n-3)

For your convenience several terms of this sequence are:

 3 5 8 16 29 53 98 . . .

Call your new class ModFib and create a static method in it called modFibonacci.

Test your new class with the following Tester class:

import java.io.*;
import java.util.*;
public class Tester
{
 public static void main(String args[])
 {
 Scanner kbReader = new Scanner(System.in);
 System.out.print("Generate which term number? ");
 int k = kbReader.nextInt();

 System.out.println("Term #" + k + " is " + ModFib.modFibonacci(k));
 }
}

Typical runs should look like this:

Generate which term number? 5
Term #5 is 53

Generate which term number? 6
Term #6 is 98

41-1

Lesson 41…..Sorting Routines

What is sorting?

Sorting simply means arranging items in ascending or descending order. Two types of
approaches to sorting are described here:

1. The incremental approach

2. The divide-and-conquer approach (typically uses recursion)

Of the two, divide-and-conquer is by far the fastest (in most cases)…but also the
most complicated.

**

In each of the sorting routines on the following pages we illustrate sorting an int array; however,
the code could easily be adapted to sorting with other data types.

A class for testing sorting routines:

Test the various methods of sorting with the following code:

public class Tester
{

 public static void main(String args[])
 {
 int theArray[] = {4,2,5,1,3,18,0,9,6};
 sort(theArray);

 for(int j = 0; j < theArray.length; j++)
 {
 System.out.print(theArray[j] + " ");
 }
 System.out.println(" ");
 }

 public static void sort(int a[])
 {
 …specific code for a particular sorting method…
 }

 }

41-2

Bubble Sort

Best Average Worst
O(n) O(n2) O(n2)

The Bubble sort uses an incremental approach. The following shows the sequence of steps in a
Bubble Sort:

4 2 5 1 3 Original data.

4 2 5 1 3 Compare the shaded pair. 4 > 2, so we need to swap.

2 4 5 1 3 Swap completed.

2 4 5 1 3 Compare the shaded pair. No swap needed.

2 4 5 1 3 Compare the shaded pair. 5 > 1, so we need to swap.

2 4 1 5 3 Swap completed.

2 4 1 5 3 Compare the shaded pair. 5 > 3, so we need to swap.

2 4 1 3 5 Swap completed.

After the first pass we notice that the largest value (5) has “bubbled” its way to the end
of the list; however, the array is still not in order. Continue to repeat this process until
no swaps are made. Only then is the list in order. On each subsequent pass the next
largest value will “bubble” its way to its correct position near the end of the list.

Making the swap:

Before presenting a method that will perform a Bubble sort we need to first understand
how to swap the contents of two variables. This procedure is at the heart of several types
of sorting. Suppose we wish to interchange the value of integers p and q and that their
original values are:

 p = 5 and q = 79

When finished with the swap, their values will be:

 p = 79 and q = 5

This is accomplished with the following code where you will notice the presence of int
temp which serves as a safe haven for the first variable while the swap is being made.

temp = p;
p = q;
q = temp;

41-3

A Bubble Sort method:

The following method makes use of a similar swap where, instead, array values are used.
You will also notice the use of a boolean loopSomeMore variable. Just under the sample
sequence of steps above, the instruction, “Continue to repeat this process until no swaps
are made.”, is implemented by usage of this boolean variable.

 public static void sort(int a[]) //Bubble Sort
 {

 boolean loopSomeMore;
 do
 {

 loopSomeMore = false;
 for(int j = 0; j < a.length -1; j++)
 {

 if(a[j] > a[j+1])
 {

 //swap a[j] and a[j+1]
 int temp = a[j];
 a[j] = a[j+1];
 a[j+1] = temp;

 loopSomeMore = true;

 }
 }

 }
 while(loopSomeMore);

 }

Very, very slow:

This Bubble Sort is the slowest and most inefficient of all the sorting routines. It
should only be used if you have a very few items to sort (say, 50 items or less). If
you had, for example, 10,000 items to sort, this routine could literally take hours
to run. It is dreadfully slow. So, why do we present it if it is so slow? Of all the
sorting routines, it is also the simplest to understand and is therefore, a starting
point for our study of sorting.

Project… Bubble Sort
Run the above code with the Tester class on page 41-1.

41-4

Selection Sort O(n2) for all cases

The Selection Sort uses an incremental approach. During the first pass the smallest value is
selected from the entire array and swapped with the first element. On the second pass the
smallest value is selected from the array beginning with the 2nd element and swapped with the
second element, etc….the above description is for an ascending sort. The following shows the
sequence of steps in a Selection Sort:

4 2 5 1 3 Original data.

1 2 5 4 3 1st pass: Select smallest value in gray area just above…It is 1.
1 and 4 have now been swapped.

1 2 5 4 3 2nd pass: Select smallest value in gray area just above…It is 3
No swap necessary since the 2 above is less than 3.

1 2 3 4 5 3rd pass: Select smallest value in gray area just above…It is 3
3 and 5 have now been swapped.

1 2 3 4 5 4th pass: Select smallest value in gray area just above…It is 5.
No swap necessary since the 4 above is less than 5.

A Selection Sort method:

public static void sort(int a[])
{
 int min, minIndex;
 for(int i = 0;i < a.length; ++i)
 {
 min = a[i];
 minIndex = i;
 for (int j = i + 1; j < a.length; ++j) // Find minimum
 {
 if (a[j] < min) //salient feature
 {
 min = a[j];
 minIndex = j;
 }
 }

 a[minIndex] = a[i]; // swap
 a[i] = min;

 }
}

Disadvantage:
A disadvantage of the selection sort is that it will not allow an early exit from the entire
process if the list becomes ordered in an early pass.

Project… Selection Sort
Run the above code with the Tester class on page 41-1.

41-5

Selection Sort Exercise

1. What is a disadvantage of the Selection Sort?

2. What is the Big O value for the Selection Sort in best, worst, and average cases?

3. In a sentence or two, describe the basic operation of the Selection Sort.

4. Is the Selection Sort “incremental” or “divide-and-conquer” in its approach?

5. What line or lines of code from the previous page determines the smallest value in the

“shaded” region?

6. Which loop from the previous page takes us through the “shaded” region looking for the

smallest value?

7. Consider applying an ascending Selection Sort to: 3, 7, 6, 4, 5. Make a sequence of
charts showing the results of each “pass”.

3 7 6 4 5 Original data.

 1st pass:

 2nd pass:

 3rd pass:

 4th pass:

41-6

Insertion Sort

Best Average Worst
O(n) O(n2) O(n2)

The Insertion Sort uses an incremental approach. It works similar to the way you might organize
a hand of cards. The unsorted cards begin face down on the table and are picked up one by one.
As each new unsorted card is picked up, it is inserted into the correct order in your organized
hand of cards.

The following shows the sequence of steps in an Insertion Sort:

2 5 1 4 3 Original data. The 2 is our “hand” so insert the 5 into it.

2 5 1 4 3 End of 1st pass: The 5 is already in the right place. No need to move.

2 5 1 4 3 Our “hand” is now 2, 5. Think of inserting the 1 into it.

1 2 5 4 3 End of 2nd pass: Notice the 1 has been inserted in the right place.

1 2 5 4 3 Our “hand” is now 1, 2, 5. Think of inserting the 4 into it.

1 2 4 5 3 End of 3rd pass: Notice the 4 has been inserted in the right place.

1 2 4 5 3 Our “hand” is now 1, 2, 4, 5. Think of inserting the 3 into it.

1 2 3 4 5 End of 4th pass: Notice the 3 has been inserted in the right place.

public static void sort(int a[]) { //This will do an ascending sort
 int itemToInsert, j;
 boolean keepGoing;
 //On kth pass, insert item k into its correct position among the first k items in the array
 for(int k = 1; k < a.length; k++)

{
 //Go backwards through the list, looking for the slot to insert a[k]
 itemToInsert = a[k];
 j = k –1;
 keepGoing = true;
 while((j >= 0) && keepGoing)
 {
 if (itemToInsert < a[j])
 {
 a[j + 1] = a[j]; //Salient feature
 j--;
 if(j == -1) //special case for inserting an item at [0]
 a[0] = itemToInsert;
 }
 else //Upon leaving loop, j + 1 is the index where itemToInsert belongs

 {
 keepGoing = false;
 a[j + 1] = itemToInsert;
 }
 }
}

41-7

An advantage:

The Insertion Sort has an advantage over the Selection Sort since it takes advantage of a
partially ordered list. This is evidenced by the fact that in a best case, big O for an
Insertion Sort is O(n), whereas for a Selection Sort, it is always O(n2).

Project… Insertion Sort
Run the above code with the Tester class on page 41-1.

Insertion Sort Exercise

1. What is an advantage of the Insertion sort as compared to the Selection Sort?

2. What is the Big O value for the Insertion Sort in best, worst, and average cases?

3. In a sentence or two, describe the basic operation of the Insertion Sort. You may use an

analogy if desired.

4. Is the Insertion Sort “incremental” or “divide-and-conquer” in its approach?

5. What is the purpose of the variable keepGoing?

6. Why is the k loop started at index 1 instead of index 0?

7. What code would you change to implement a descending sort?

8. Consider applying an ascending Insertion Sort to: 3, 7, 6, 4, 5. Fill in the sequence of

charts showing the results of each “pass”.

3 7 6 4 5 Original data.

 End of 1st pass:

 End of 2 rd pass:

 End of 3rd pass:

 End of 4th pass:

41-8

Quick Sort

Best Average Worst
O(n log(n)) O(n log(n)) O(n2)

Two partitions:

The Quick Sort uses a divide-and-conquer approach. It begins by breaking the original
list into two partitions (sections) based on the value of some “pivot value”. One partition
will eventually contain all the elements with values greater than the pivot value. The
other will eventually contain all the elements with values less than or equal to the pivot
value. (This description is not always completely true, but close.) Repeat this process on
each partition.

Notice the word partition above. This is a salient feature of the Quick Sort. To identify
this type of sort, look for the word “partition” (or equivalent term) in a rem or perhaps as
a variable name.

A Quick Sort method:

Initially, enter this method with left = the left most index (0) and with right = right most
index (a.length – 1). This is also a salient feature.

public static void sort(int a[], int left, int right)
{
 if (left >= right) return;
 int k = left;
 int j = right;
 int pivotValue = a[(left + right) / 2]; // salient feature
 while (k < j)
 {
 while (a[k] < pivotValue) //salient feature (pivot point)
 {
 k++;
 }

 while (pivotValue < a[j])
 {
 j--;
 }
 if (k <= j)
 {
 int temp = a[k]; //swap a[k] and a[j]
 a[k] = a[j];
 a[j] = temp;
 k++;
 j--;
 }
 }
 sort(a, left, j); //salient feature (recursion)
 sort(a, k, right);
}

41-9

Summary of how Quick Sort works:

A “pivot value” is selected. Usually this is the element at the center position of the array.
Elements in the array are moved such that all elements less than the pivot value are in one
half (partition) and all elements larger than or equal to the pivot value are in the other half
(partition). This process is continually repeated on each partition. The partitions become
smaller until they each consist of just a single element. At that point the array is ordered.

Used in Array.sort():
The Quick Sort is used on primitive arrays passed to Arrays.sort(); however, the Merge
Sort is used on object arrays.

Project… Quick Sort
Run the above code with the Tester class on page 41-1.

Quick Sort Exercise

1. What is an advantage of the Quick Sort as compared to Selection and Insertion Sort?

2. What is the Big O value for the Quick Sort in best, worst, and average cases?

3. Is the Quick Sort “incremental” or “divide-and-conquer” in its approach?

4. Suppose the signature of a Quick Sort routine is:
 public void quickSort(int a[], int start, int end)

If a.length yields a value of 32, what should be the values passed by f and g when the
routine is initially called via:
 quickSort(a, f, g);

5. Into how many partitions is the array divided upon each recursion?

6. Explain how the pivot value is used to separate the list into two halves.

7. How is the pivot value usually calculated?

8. Pick out the line or lines of code that demonstrate that Quick Sort is recursive.

9. Assume that 6 is the pivot value and that we are operating under the rules:
While a[i] < pivot value, increment i.
While a[j] >= pivot value, decrement j.
Interchange a[i] and a[j] as long as i <= j.

4 7 9 1 6 2 3 5 8
 i j

What two values will get interchanged first?

41-10

Merge Sort O(n log(n)) for all cases

The Merge Sort uses the divide-and-conquer approach. It begins by placing each element into
its own individual list. Then each pair of adjacent lists is combined into one sorted list. This
continues until there is one big, final, sorted list. The process is illustrated below:

Put each element into its
own list of one element.

 72 83 40 90 51 30 18 75

Merge every two lists above
into a single sorted list.

 72,83 40,90 30,51 18,75

Merge every two lists above
into a single sorted list.

 40,72,83,90 18,30,51,75

Merge the two lists above
into the final sorted list.

 18,30,40,51,72,75,83,90

The above, however, is a very simplistic approach. In reality, the merge sort is often
implemented recursively as illustrated with the following code:

A Merge Sort method:

//Enter this method with left = the beginning index (initially 0) and right = the last index
//(initially a.length-1)
public static void sort (int a[], int left, int right)
{
 if (right = = left) return;
 int middle = (left + right) /2; //salient feature
 sort(a, left, middle); //salient feature #1 (recursion)
 sort(a, middle + 1, right); //salient feature #2
 merge(a, left, middle, right); //salient feature #3
}
//…see two pages forward for the merge method, an important component of this sorting
technique.

How it works:

The recursive calls to sort and the resulting recalculation of middle = (left + right) / 2
continually subdivide the lists until we get individual “lists” of one element each. Due to
the nature of recursion, that subdivision process continues until we reach the final lists of
one element each before the merge method actually begins merging the lists together,
two at a time.

Subdividing the list:

On the following page we see this process of recursively subdividing the lists. We will
consider the following original order of some numbers to be sorted:

7 8 6 2 3 5

41-11

X X X X X X We begin the process by subdividing the
list in half. For the time being we will just
ignore the numbers and put in X’s.

X X X X X X

X X X X X X

Notice that we have started at the bottom
and our picture is growing in the upward
direction as we subdivide according to
middle = (left + right)/2 using integer
arithmetic.

X X X X X X

X X X X X X

X X X X X X

Now subdivide again. The two lists of three
elements above do not divide into two
equal parts. When unequal, the left part has
one more element.

X X X X X X

X X X X X X

X X X X X X

X X X X X X
Left half of the above Right half of the above
illustrates salient illustrates salient
feature #1 feature #2

Divide the remaining lists of two elements
again and we arrive at our final
arrangement of 6 individual lists with each
“list” containing only one element.

7 8 6 2 3 5

Now let’s consider what our individual
elements are in the top row of individual
“lists”. These are the numbers we wish to
order.

7 8 6 2 3 5

7 8 6 2 3 5

Here we merge some adjacent lists into
sorted lists according to the subdivisions
predetermined above.

7 8 6 2 3 5

7 8 6 2 3 5

6 7 8 2 3 5

2 3 5 6 7 8

The process continues until we have one,
big, sorted list.

//salient feature #3 (merging)

41-12

The merge method (used by Merge Sort):

private static void merge(int a[], int left, int middle, int right)
{
 //This temporary array will be used to build the merged list
 int tmpArray[] = new int[right – left +1];

//This creation of a temporary array is a BIG feature of the merge sort.

 int index1 = left;
 int index2 = middle + 1;
 int indx = 0;

 //Loop until one of the sublists is finished, adding the smaller of the first
 //elements of each sublist to the merged list.
 while (index1 <= middle && index2 <= right)
 {
 if (a[index1] < a[index2])
 {
 tmpArray[indx] = a[index1];
 index1++;

}
else
{

tmpArray[indx] = a[index2];
 index2++;
}
indx++;

}

//Add to the merged list the remaining elements of whichever sublist is
//not yet finished
while(index1 <= middle)
{

tmpArray[indx] = a[index1];
 index1++;
 indx++;
}
while(index2 <= right)
{

tmpArray[indx] = a[index2];
 index2++;
 indx++;
}

//Copy the merged list from the tmpArray array into the a array
for (indx = 0; indx < tmpArray.length; indx++)
{
 a[left + indx] = tmpArray[indx];
}

}

41-13

Used in Array.sort():

The Quick Sort is used on primitive arrays passed to Arrays.sort(); however, the Merge
Sort is used on object arrays.

Project… Merge Sort
Run the above code (both the sort and merge methods) with the Tester class on page 41-1.

Big O Summary

It will probably be easier to learn the Big O designation for each sorting and search routine when
simultaneously viewing all of them in a table:

Algorithm Best Case Average Case Worst Case

Sorts
Bubble Sort O(n) O(n2) O(n2)
Selection Sort O(n2) O(n2) O(n2)
Insertion Sort O(n) O(n2) O(n2)
Quick Sort O(n log n) O(n log n) O(n2)
Merge Sort O(n log n) O(n log n) O(n log n)

Searches
Linear or Sequential O(1) O(n) O(n)
Binary O(1) O(log n) O(log n)
Binary Search Tree O(1) O(log n) O(n)

Occasionally, “best case” is referred to as the most restrictive or fastest executing case.
Similarly, “worst case” is referred to as the least restrictive or slowest executing case.

Prepare for the following “Contest Type Problems”:

In the following contest type questions you will encounter Comparable type objects. The
Comparable interface is not introduced until Lesson 45. There, you will learn that this
interface has only one method, compareTo. This method behaves exactly the same as
does the String compareTo method described in Lesson 17.

Another question in this section concerns a binary search. The discussion in Lesson 39,
example 10, will be of some assistance in this problem. A later lesson, Lesson 51, is
devoted to the details of a binary search.

41-14

Sorting … Contest Type Problems

1. If theName is an array of Strings defined
in class Alf, which of these would be a
correct call to the mSort() method from
the Alf class?

A. mSort(theName[])
B. MergeSort.mSort(theName)
C. mSort(theName, 0,

theName.length)
D. MergeSort.mSort(theName, 0,

theName.maxLength)
E. None of these

2. Suppose the array of Integer objects
below is sorted with the mSort() method.
What is the final state of the array after the
two recursive calls to mSort() complete,
but before the final call to merge()?

11 20 1 -3 -2 0

A.
11 20 1 -3 -2 0

B.

1 -3 -2 0 11 20

C.

-3 -2 0 1 11 20

D.

1 11 20 -3 -2 0

E. None of these

3. Which of these has the same worst case
Big O as the mSort method to the right?

A. Binary search
B. Sequential search
C. Insertion Sort
D. Quick Sort
E. None of these

public class MergeSort
{
 private static void mSort(Comparable[] S,
 int first, int last)
 {
 int mid = (first + last) / 2;
 if(mid = = first) return;
 mSort(S, first, mid);
 mSort(S, mid, last);
 merge(S, first, last);
 }

 public static void mSort(Comparable[] S)
 {
 mSort(S, 0, S.length);
 }

 private static void merge(Comparable[] S, int
 first, int last)
 {
 Comparable tmp[] = new
 Comparable[last - first];
 int i=first, j=(first+last)/2, k=0;
 int mid=j;

 while(i<mid && j<last)
 {
 if(S[j].compareTo(S[j])<0)
 tmp[k++]=S[j++];
 else
 tmp[k++]=S[j++];
 }

 while(i<mid) tmp[k++] = S[i++];
 while(j<last) tmp[k++]=S[j++];

 for(i=0; i<last-first; ++i)
 S[first + i] = tmp[i];
 }
}

4. Which of the following could be a legal parameter for the mSort method above to receive as its
first parameter?

 A. an array of Strings B. an array of integers C. an array of HashMaps
 D. an array of doubles E. All of these

41-15

5. What is the purpose of the aSort
method?

A. Perform a Selection Sort
B. Perform a Binary Search
C. Perform an Insertion Sort
D. Perform a Merge Sort
E. Perform a Quick Sort

6. If the array below is passed to the
aSort method, what will it look like after
the outer for-loop completes its first
iteration?

“dude” “where’s” “my” “car”

A.
“where’s” “car” “my” “dude”

 B.

“dude” “my” “car” “where’s”

C.
“where’s” “my” “car” “dude”

 D.
“dude” “where’s” “my” “car”

 E. None of these

7. What is the worst case Big O value for
aSort() when it receives an array of
length n?

A. O(log(n))
B. O(n2)
C. O(n log n)
D. O(n)
E. None of these

public static void aSort(Comparable array[])
{
 int length = array.length;
 for(int j = 1; j<length; ++j)
 {
 int pos1 = 0, pos2 = j-1;
 while(pos1 <= pos2)
 {
 int mid = (pos1 + pos2) / 2;
 if(array[mid].compareTo(array[j]) < 0)
 pos1 = mid + 1;
 else
 pos2 = mid – 1;
 }

 Comparable tmp=array[j];
 for(int k = length - 1; k > pos1; --k)
 {
 array[k]=array[k-1];
 }

 array[pos1] = tmp;
 }
}

8. To do a binary search of an array of Object type objects, which of the following must be true?

A. The objects must be sorted
B. The objects must have been of the same original type
C. The original objects must have all been String types
D. Both A and B
E. All of these

9. The Arrays.sort() static method of the java.util package sorts an array. What is the best case Big O
value of this method on an array of randomly ordered double precision numbers?

 A. O(n2) B. O(2n) C. O(n log n) D. O(log n) E. None of these

41-16
10. Which sorting algorithm is
implemented by the method to the right?

A. Quick Sort
B. Selection Sort
C. Merge Sort
D. Insertion Sort
E. None of these

11. Time complexity analysis yields what
value if array.length equals n? Choose
the smallest correct answer.

A. O(n log n)
B. O(n)
C. O(n2)
D. O(log n)
E. None of these

public static void mysterySort(int [] array) {
 int minIndx=0, minVal=0;

 for(int k=0; i<array.length; ++k) {
 minVal = array[k];
 minIndx = k;
 for(int j = k+1; j < array.length; ++j)) {
 if(array[j] < array[minIndx])
 {
 minVal = array[j];
 minIndx = j;
 }
 array[minIndx] = array[k];
 array[k] = minVal;
 }
 }
}

12. How many times is the equals()
method called when executing bSrch(B,
0, 5, “ff”) where B is the array below?

“aa” “bb” “ee” “ff” “yy” “zz”

A. 1
B. 3
C. 2
D. 0
E. None of these

13. If you are limited to examining only
n elements, what is the largest size array
upon which a binary search can be
implemented?

A. n2
B. 2n
C. 2n
D. 2n-1
E. None of these

// Binary Search method
public static boolean bSrch(Comparable [] Array, int
 start, int end, Comparable thing)
{
 if(start>end)
 return false;
 int mid = (start + end) / 2;
 if(Array[mid].equals(thing))
 {
 return true;
 }
 else if(Array[mid].compareTo(thing) < 0)
 {
 return bSrch(Array, mid+1, end, thing);
 }
 else
 {
 return bSrch(Array, start, mid-1, thing);
 }
}

14. What code replaces <*1> in the code
to the right so that j will always be less
than the number of elements in the ary
array?

A. ary.length+1 B. ary.length
C. ary.length-1 D. (length)ary
E. None of these

15. Assume that <*1> has been filled in
correctly. Which sorting routine is being
implemented?

A. Selection B. Quick C. Merge
D. Insertion E. None of these

public static void mysterySort(int ary[]) {
 for(int j=0; j < <*1>; ++j)
 {
 int min = ary[j], minIndx = j;
 for(int k=j+1; k < <*1>; ++k)
 if(ary[k] < ary[minIndx])
 {
 min=ary[k];
 minIndx = k;
 }
 ary[minIndx]= ary[j];
 ary[j] = min;
 }
}

41-17

16. How would you call the sorting
routine that’s a part of the java.util
package, to sort the array tinyArray
(shown to the right)?

A. Arrays.sort(tinyArray)
B. mergeSort(tinyArray)
C. tinyArray.sort()
D. (Arrays)sort(tinyArray)
E. None of these

int [] tinyArray;
 tinyArray[0] = 89;
 tinyArray[1] = 511;
 tinyArray[2] = -18;
 tinyArray[3] = 29;
 tinyArray[4] = 67;

17. For the mrgSort method to the right
to implement a merge sort on Array,
what should the merge() method
accomplish?

A. Do a Selection sort on the
combination of the two halves.

B. Sort the first half of Array
C. Combine the unsorted list stored

in the front half of Array with the
unsorted list in the back half of
Array.

D. Combine the sorted list stored in
the first half of Array with the
sorted list the in second half of
Array in such a way that the
combination is sorted.

E. None of these

18. Assume that merge() has been done
correctly. What is the worst case Big O
value of mergeSort(Array, 0,
Array.length), where n equals
Array.length?

A. O(n2)
B. O(log n)
C. O(n log n)
D. O(log n)
E. None of these

public static void mrgSort(Comparable[] Array, double
 start, double end)
{
 double mid = (start + end) / 2;
 if(mid = = start)
 {
 return;
 }
 mrgSort(Array, start, mid);
 mrgSort(Array, mid, end);
 merge(Array, start, end);
}

41-18

Project… Multiple Key Sorting

Create a text file named Names_ages.txt with the following content:

Jones 14
Abrams 15
Smith 19
Jones 9
Alexander 22
Smith 20
Smith 17
Tippurt 42
Jones 2
Herkman 12
Jones 11

 Each line is a person’s last name followed by a space and then his age. We want to sort these
names alphabetically and in the case of duplicate names, sort by age in an ascending fashion. A
properly sorted list will appear as follows:

Abrams, 15
Alexander, 22
Herkman, 12
Jones, 2
Jones, 9
Jones, 11
Jones, 14
Smith, 17
Smith, 19
Smith, 20
Tippurt, 42

Paste in code from your BaseClass to input this file and then use a modified Selection Sort. Call
you project MultiKeySort. (Notice the commas in the output.)

42-1

Lesson 42….. List interface

Classes that implement the List interface:

Java includes three classes (LinkedList, ArrayList, and Vector) that implement the List
interface This interface and the three classes are made available by importing java.util.*:

List interface methods:

List method signature Action
void add(int index, Object o) Inserts the object o at the position specified by index

after all existing objects at that index and greater are
moved forward one position.

boolean add(Object o) Appends o to the end of the list. Returns true.
boolean addAll(Collection c) Appends c to the end of the list.
void clear() Removes all elements from the list.
boolean contains(Object o) Returns true if this list contains the specified object.
boolean containsAll(Collection c) Returns true if this list contains all of the elements in c.
boolean equals(Object o) Returns true if List object o has the same elements in the

same order as the present list. If o is any other collection
such as a Set, a false is returned.

Object get(int index) Returns the object at the position specified by index.
int indexOf(Object o) Returns the index of the first occurrence of the specified

object…searching from left to right.…or –1 if not found.
boolean isEmpty() Returns true if this list contains no objects.
Iterator iterator() Returns an Iterator object for this list…Important…to

be discussed in the next chapter.
int lastIndexOf(Object o) Returns the index of the first occurrence of o… when

searching from right to left.…or –1 if the object is not
found.

ListIterator listIterator() Returns a ListIterator object for this list…
Important…to be discussed in the next chapter.

Object remove(int index) Removes the object at the position specified by index and
returns the object.

boolean remove(Object o) Remove the first occurrence of o (searching from left to
right).

boolean removeAll(Collection c) Removes from this list the first occurrence of all
elements in c.

boolean retainAll(Collection c)) Retains only the elements in c.
Object set(int index, Object o) Replaces the object at the position specified by index

with o…Returns old object.
int size() Returns the number of objects in the list
Object[] toArray() Returns an Object array in the proper sequence.

Printing a List object:

It is possible to print the contents of an entire list named lst with System.out.println(lst).
A typical printout would look like the following if characters ‘a’ – ‘g’ are stored as the
individual elements of the list (notice the surrounding square brackets):

 [a, b, c, d, e, f, g]

42-2
Creating a List object:

There are three ways to create a List object since there are three classes (mentioned
above) that implement the List interface.

1. List lst = new LinkedList();

2. List lst = new ArrayList();

3. List lst = new Vector();

This is basically an array with an initial capacity and having the ability to increase its
size with a specified increment amount when a new storage attempt exceeds the
present size.

The Arrays.asList() method:
If ary is an ordinary, singly-subscripted array, then Arrays.asList(ary) will return a List
object in which the elements of the list are the elements of ary. It is also possible to make
very simple lists easily as shown by the following:

List lst = Arrays.asList(“A”, “B”, “C”, “D”);

It should be noted that it is not possible to add or remove elements from the resulting List
object; however, it is possible to use the set method to change values. Iterators can be
produced from the list and used to step through the items in the list.

Important features:

Here are some salient facts about these three List types:
1. The lists consist of nothing but objects of type Object. Any type object can be

stored in a list; however, they are immediately and automatically converted into
Object type objects for storage.

2. A list can have different types of objects initially stored in it; however, in actual

practice most lists are restricted to just one type.

3. The objects retrieved from a list generally need to be cast to a specific object type
before being used. For example, unless the object lst was created using type
parameters, Double d = lst.get(2); won’t work but Double d =
(Double)lst.get(2); will.

4. Sort List, ArrayList, LinkedList, or Vector object obj with Collections.sort(obj);

On your own:

This lesson has been purposely left vague and sparse. The exercises that follow are all
“doable” using the information in this lesson, especially the descriptions of the methods
in the interface on the preceding page. The student is on his own to “ferret out” the
information needed to answer the questions. As an example of doing this, consider
problem 3 on the next page. Even though Iterator objects have not been presented yet,
just look over the methods in the interface and see which one deals with an Iterator. No
knowledge of what an Iterator is or how it works is actually needed.

42-3

Exercise on Lesson 42

Fill in the blanks below, except the comment column. Only put a note in the comment column if
there is an exception (error). The letters e, j, p, x, y, and z all represent objects.

Method State of list after
method is executed

Value Returned Comment

 Initially, list is empty

add(0,z)
add(1,y)
add(1,x)
add(5,p)
isEmpty()
size()
indexOf(x)
contains(x)
indexOf(j)
contains(j)
get(1) z x y x
get(3)
set(2,e)
remove(0)
remove(2)
remove(1)
add(x)
lastIndexOf(x)
clear()
isEmpty()
remove(0)
set(0,z)

1. Assume that lst is an ArrayList object and that the object at index 2 was originally a
wrapper class Integer before being added to the list. Also assume that lst was not created
with type parameters. The following code will “almost” work. Put in the modification
that will make it work.

 Integer iw = lst.get(2);

2. public static void theMethod(List opal)
 {
 Iterator iter = ??????;
 … more code …

 }

 What code replaces ?????? so that an Iterator object is created from opal?

43-1

Lesson 43….. ArrayList

You will recall from Lesson 42 the ArrayList is one of several classes that implement the List
interface. As its name suggests, ArrayList also involves arrays. Basically, everything we learned
in Lessons 18 and 19 concerning arrays can also be applied to ArrayList objects, however, with
slightly different methods.

Comparing ArrayList to ordinary arrays:

So, a legitimate question to ask at this point is, “Why clutter our brains with a new set of
commands for the ArrayList if it serves the same purpose as do ordinary arrays?” We are
going to discuss the advantages of the ArrayList class over ordinary arrays and, to be fair,
its disadvantages.

 Advantages… Ordinary arrays are fixed in size. When we create an array, we anticipate

the largest possible size it will ever need to be, and when instantiating the array,
dimension it to that size. We call this the physical size of the array and it always
remains that size even though at some point in your program you may wish to
only use a portion of the array. The size of that portion is called the logical size.
Your own code must keep up with that size. By contrast, the ArrayList expands
and contracts to meet your needs. If you remove items from or add items to your
ArrayList, the physical and logical sizes are always identical. This could be very
important if you wish to be conservative of memory usage. With memory being
so abundant and inexpensive today, this is no longer the advantage it once was.

One of the add methods allows very easy insertions of new items in the interior of
the list without the nuisance of having to pre-move preexisting items.

A final advantage is that iterator objects are provided, whereby we can easily
traverse the list. See Lesson 44 for an explanation of iterators.

Disadvantages… ArrayList can only store objects. If we wish to store primitives such

as integers, doubles, or booleans, they must be converted into their wrapper class
counterparts (see Lesson 21). This was once a nuisance because they had to be
converted manually, but is now circumvented with the advent of Java 5.0+ and its
autoboxing feature. Similarly, when we retrieve things from an ArrayList, they
come out as objects. “Big deal”, you say….certainly, if we store objects in the list,
then we expect to get objects back when we retrieve from the list. Yes, but it’s
worse than one might think. When retrieving an object from the list, it doesn’t
come back as the same type object that was originally stored. Rather, it comes
back as an Object type object (recall the cosmic superclass from Lesson 36). It
will be necessary to cast it down to its original object type…yet another nuisance
(partially circumvented by Java 5.0+ if type parameters are used as discussed
below).

So, what are the methods we use with ArrayList? Look back at Lesson 42 on the List interface.
Since ArrayList implements the List interface, those are the methods. We will now offer
sample usage and/or discussion of several of the more important methods.

In each of the following examples we are to assume an ArrayList object has been created via

ArrayList aryLst = new ArrayList(); or List aryLst = new ArrayList();

43-2
Type parameters:

With the addition of type parameters to Java 5.0+, it is also possible to create an
ArrayList object as follows (See Appendix AF for the related topic of generics.):

ArrayList<String> aryLst = new ArrayList<String>();

The <String> part indicates that objects we add to the list can only be String types.
(Instead of String we could use any object type.) This insures “type safety” and would
result in a compile time error if we ever tried to add some other type object to aryLst.
Type parameters also remove the burden of casting Object type objects retrieved from a
list back to their original type. Unfortunately objects retrieved from an ArrayList using an
iterator must still be cast unless the iterator also uses generics (see page 44-3).

In the following examples, assume that only Integer type objects have been stored in the list and
that aryLst was created with List<Integer>aryLst = new ArrayList<Integer>();

void add(Object o) //signature
 Example:

aryLst.add(13);
 //pre Java 5.0

 Integer jw = new Integer(j);
 aryLst.add(jw); // add jw to the end of the list

void add(int index, Object o) //signature
 Example:
 aryLst.add(3, 13);
 //pre Java 5.0
 Integer jw = new Integer(j);
 aryLst.add(3, jw); //inserts jw at index 3 after moving the existing object at index

 //3 and greater, up one notch.

Object get(int index) //signature
 Example:
 int q = aryLst.get(3);
 //pre Java 5.0
 Object obj = aryLst.get(3); //retrieve object at position 3
 Integer qw = (Integer)obj; //cast down from Object to Integer
 int q = qw.intValue(); //convert back to int type.

Object remove(int index) //signature
 Example:

int q = aryLst.remove(3);
 //pre Java 5.0

Object obj = aryLst.remove(3); // removes object at position 3 (then compacts the list)
Integer qw = (Integer)obj; //cast down from Object to Integer

 int q = qw.intValue(); //convert back to int type.

Object removeLast() //signature
 Example:
 int q = aryLst.removeLast();
 // pre Java 5.0
 Object obj = aryLst.removeLast(); // removes object at end of list and returns that object

Integer qw = (Integer)obj; //cast down from Object to Integer
 int q = qw.intValue(); //convert back to int type

.

43-3
Object set(int index, Object o) //signature
 Example:
 int q = aryLst.set(3, 13);
 //pre Java 5.0
 Integer jw = new Integer(13);
 Object obj = aryLst.set(3, jw); // replaces object at position 3 with jw and returns original object

Integer qw = (Integer)obj; //cast down from Object to Integer
 int q = qw.intValue(); //convert back to int type.

boolean isEmpty() //signature
 Example:
 aryLst.isEmpty(); // returns true if there are no objects in the list

int size() //signature
 Example:
 aryLst.size(); //returns the number of objects in the list

void clear() //signature
 Example:
 aryLst.clear(); //removes all objects from the list

With Java 5.0+, autoboxing makes the following three methods (signatures are shown) easy to
use. For example, if we are seeking the integer 13, the argument sent to the method would simply
be 13.

int indexOf(Object o)
int lastIndexOf(Object o)
boolean contains(Object o)

Constructors:

ArrayList() //Default constructor
ArrayList(Collection c) //Constructs a list with the elements of the specified collection.
ArrayList(int j) //For fast storage, preallocates space for j elements; however, more
 //than j can be stored.

Big O values:
Determine the efficiency of algorithms using ArrayList methods with the following table:

List Methods Used With ArrayList Big O values
add(int index, Object o) O(n)
add(Object o) O(1)
contains(Object o) O(n)
get(int index) O(1)
indexOf(Object o) O(n)
remove(int index) O(n)
clear() O(1)
set(int index, Object o) O(1)
size() O(1)

Table43-1

Two very important methods, iterator() and listIterator() will be discussed in Lesson 44.

43-4

Exercise on Lesson 43

1. Write code that will instantiate an ArrayList object called alst and have the restriction that
only String objects can be stored in it.

2. ArrayLists are restricted in that only ____________ can be stored in them.

3. What is the main advantage in using an ArrayList object as opposed to an ordinary array?

4. What is an advantage of using an ArrayList object that was created with type parameters?

In problems 5 - 9 an operation is performed with the “ordinary” array ary. Write equivalent code
that performs the same operation on the ArrayList object called a. Assume that Java 5.0+ is being
used and give two answers for each problem (parts A and B). For A part assume that a was
created with List a = new ArrayList(); and for B part assume List<Integer>a = new
ArrayList<Integer>(); was used:

5. int x = 19;
ary[5] = x;

6. int gh = ary[22];

7. int sz = ary.length;

8. int kd = ary[101];
ary[101] = 17;
 Use the set method:

9. //Before inserting a new number, 127, at position 59, it will be necessary to move all
 //up one notch. Assume that the logical size of our array is logicalSize.

for(int j = logicalSize; j >=59, j--)
{
 ary[j+1] = ary[j];
}
ary[59] = 127; //insert the new number, 127, at index 59.

What code using List method(s) does the equivalent of the above code?

10. What does the following code accomplish? (alist is an ArrayList object)

while(!alist.isEmpty())
{
 alist.removeLast();
}

11. What one line of code will accomplish the same thing as does the code in #10 above?

12. Write a single line of code that will retrieve the String object stored at index 99 of the

ArrayList object buster and then store it in a String called myString.

13. What type variable is always returned when retrieving items from an ArrayList object?

43-5

ArrayList… Contest Type Problems

1. What replaces <*1> in the code to the right to
throw an appropriate exception when it violates the
precondition?

A. throws RunTimeException;
B. throw new RunTimeException();
C. throw new NumberFormatException();
D. throws NumberFormatException();
E. throw new NullPointerException();

2. What replaces <*2> in the code to the right to
access the individual weight of the player in the
plyrs list with index i?

A. ((Player) plyrs.get(i).weight())
B. ((Player)plyrs.get(i)).weight()
C. (Player) (plyrs).get(i).weight()
D. plyrs.get(i).weight()
E. More than one of these

3. The class PlayerInfo is an implementation of the
interface Player, and the PlayerInfo constructor
receives no parameters. Which of the following are
valid declarations/instantiations?

A. Player p = new PlayerInfo();
B. PlayerInfo pi = new Player();
C. Player p = new Player;
D. PlayerInfo pi = new PlayerInfo;
E. More than one of these

public interface Player
{
 public double height();
 public int weight();
}

public class Team
{
 public Team()
 {
 plyrs = new ArrayList();
 }

 //precondition: p != null
 public Computer addPlayer(Player p)
 {
 if (p = = null) <*1>
 else {
 plyrs.add(p);
 return this;
 }
 }

… more methods

 public double weight() //weight of entire team
 {
 int sum = 0;
 for (int k=0; k<=plyrs.size(); ++k)
 sum += <*2>;
 return sum;
 }

 private ArrayList plyrs;
}

4. What could be the type of kbal to insure that the
add method is used correctly?

A. int
B. String
C. Both A and B
D. Both A and B, but first cast as Object types
E. None of these

ArrayList al = new ArrayList();
al.add(kbal);

5. What would replace <*1> in the code to the
right so that the Integer stored at index 3 of the list
be stored in the primitive integer j?

A. Integer j = (Integer) aList.get(3);
B. Integer j = aList.get(3);
C. int j= (Object)aList.get(3).intValue();
D. int j= (Integer)aList.get(3);
E. None of these

ArrayList aList = new ArrayList();
//add some integers to the list
<*1>

43-6

6. Which of the following is an appropriate way to
create an ArrayList object to which we could
immediately begin adding Cabinet type objects?

A. ArrayList obj = new ArrayList(Cabinet);
B. ArrayList obj;
C. ArrayList(Cabinet) = new ArrayList();
D. ArrayList obj = new ArrayList();
E. None of these

7. If ArrayList objAL contains objects of type
Cabinet, which of the following will cause Cabinet
cab to be set equal to the object at index 8 of objAL?

A. cab = (Cabinet)(objAL.get(8));
B. cab = (Cabinet)(objAL).get(8);
C. cab = objAL.get(8);
D. More than one of the above
E. None of these

8. Suppose cab1 is an object of type Cabinet. Which
of the following returns a Description object?

A. Cabinet.cab1.getDescription();
B. cab1.getDescr();
C. cab1.descr;
D. (Description)cab1.getDescription();
E. None of these

//Assume that the classes PositionName, Officer,
//Assistant, and Description already exist
public class Cabinet
{

public Description getDescr()
{

return descr;
}
…constructor and other methods not
shown…

//State variables
private PositionName positionName;
private Officer indivName;
private Assistant underlings;
private Description descr;

}

9. What replaces <#1> in the code to the right so
that the value of the Integer stored at index 2 of the
lst object is placed into int j?

A. int j = lst.get(2);
B. Object ob = lst.get(2);

Integer ij = (Integer)ob;
int j = ij;

C. int j = (Integer)lst.get(2);
D. int j = lst.getValue(2);
E. More than one of these

List<Integer> lst = new ArrayList<Integer>();
lst.add(57);
lst.add(-102);
lst.add(57);
<#1>

43-7

Project… Big Bucks in the Bank

Create a project called BigBucks. It will have two classes in it, a Tester class and a BankAccount
class. If you still have your BankAccount class from Lesson 15, just paste it into the new project.
If not, the code for BankAccount follows:

public class BankAccount
{

 public BankAccount(String nm, double amt)
 {
 name = nm;
 balance = amt;
 }

 public void deposit(double dp)
 {
 balance = balance + dp;
 }

 public void withdraw(double wd)
 {
 balance = balance - wd;
 }
 public String name;
 public double balance;

}

You will need to create a Tester class that has a main method that provides a loop that lets you
enter several BankAccount objects. As each is entered, it will be added to an ArrayList object.
After several accounts have been entered, a loop will step through each BankAccount object in
the ArrayList and decide which account has the largest balance that will then be printed.
Following is the output screen after a typical run:

Please enter the name to whom the account belongs. ("Exit" to abort) Jim Jones
Please enter the amount of the deposit. 186.22

Please enter the name to whom the account belongs. ("Exit" to abort) Bill Gates
Please enter the amount of the deposit. 102.15

Please enter the name to whom the account belongs. ("Exit" to abort) Helen Hunt
Please enter the amount of the deposit. 1034.02

Please enter the name to whom the account belongs. ("Exit" to abort) Charles Manson
Please enter the amount of the deposit. 870.85

Please enter the name to whom the account belongs. ("Exit" to abort) exit

The account with the largest balance belongs to Helen Hunt.
The amount is $1034.02.

43-8

A partially complete Tester class is presented below. You are to complete the parts indicated in
order to achieve the screen output above.

import java.io.*;
import java.util.*; //includes ArrayList
import java.text.*; //for NumberFormat
public class Tester
{
 public static void main(String args[])
 {

 NumberFormat formatter = NumberFormat.getNumberInstance();
 formatter.setMinimumFractionDigits(2);
 formatter.setMaximumFractionDigits(2);
 String name;
 //Instantiate an ArrayList object here called aryList
 do
 {

 Scanner kbReader = new Scanner(System.in);
 System.out.print("Please enter the name to whom the account belongs.

(\"Exit\" to abort)");
 name = kbReader.nextLine();

 if(!name.equalsIgnoreCase("EXIT"))
 {

 System.out.print("Please enter the amount of the deposit. ");
 double amount = kbReader.nextDouble();
 System.out.println(" "); //gives an eye-pleasing blank line
 // Create a BankAccount object
 // Add it to the ArrayList object

 }
 }while(!name.equalsIgnoreCase("EXIT"));

 //Search aryList and print out the name and amount of the largest bank account
 BankAccount ba = get first account in the list
 double maxBalance = ba.balance;
 String maxName = ba.name;
 for(int j = 1; j < aryLst.size(); j++)
 {

?
? Step through the remaining objects and decide which one has
 largest balance (compare each balance to maxBalance)
?

 }
 Print answer
 }

 }

44-1

Lesson 44….. Iterator/ListIterator

What is iteration?

If someone asks, “Have you studied iteration yet?”, you should answer, “Yes.” Loops are
iteration structures. Each pass through a loop is an iteration. Granted, if you say
“iteration,” it sounds like you are trying to impress someone with your vocabulary;
nevertheless, iteration is a continual repeating of something…so looping fits the
definition.

Position of an iterator:

Here, we wish to loop through the various objects in a list... or in other words, simply to
step through positions of these objects. The concept of position for an iterator is central
to our understanding of Iterator and ListIterator objects. Consider the following objects
in a list:

A B C D E F G H I J

These objects have positions as indicated below:

0 1 2 3 4 5 6 7 8 9
A B C D E F G H I J

However, this familiar indexing scheme for the object in a list is not the scheme
for indexing the position of an iterator.

For an iterator, think of the cursor in a word processor. The cursor is never on any
particular character; rather, it is always between two characters. And so it is with
the position of an iterator: it is always between two of its list objects.

A B C,D E F G H I J

Notice that we are symbolically letting a comma indicate the iterator position and
that it is between the C and D objects above.

But what is the index of this position? In the above example, it is 3 since it comes
before the object of index 3…D in this case.

Possible positions:
In general the possible positions of an iterator are:

1. Just before the first item (index would have a value of 0)

2. Between two adjacent list objects

3. Just after the last item (index would be the size of the list)

Two iterator interfaces:

We have two iterator interfaces available to us. The first is very simple and the other is
considerably more robust.

44-2

1. Iterator …….. interface specified in java.util.Iterator
Recall that in the List interface that we previously studied, one of
the method’s signature was Iterator iterator(). We create an
Iterator object by calling this method.

2. ListIterator…..interface specified in java.util.ListIterator

Recall that in the List interface that we previously studied, one of
the method’s signature was ListIterator listIterator(). We create a
ListIterator object by calling this method.

Iterator
The Iterator interface has only three methods. It is commonly used with List objects but can be
used with other classes as well.

Iterator method
signature

Action

boolean hasNext() Returns true if there are any items following the current position.
Object next() Returns item following current position and then advances the

position… providing there is at least one item after the current
position.

void remove() Removes the item returned by last successful next() …providing there
were no other intervening remove operations.

Code example:
 List lst = new ArrayList(); //first, create a List object
 … add items to the list…
 Iterator itr = lst.iterator(); //now we have the object we want, itr.
 //The position of the Iterator is at the head of the list (preceding the first object)

ListIterator
The ListIterator has the above three methods (action for remove is slightly different) plus some
additional ones. It is only used with List objects, hence the name ListIterator.

ListIterator method
signature

Action

void remove() Removes the item returned by last successful next() or previous()
…providing there were no intervening add or remove operations.

boolean hasPrevious() Returns true if there are any items preceding the current position.
Object previous() Returns the item preceding the current position and moves the

position back.
int nextIndex() Returns index of next item (-1 if none). In effect this is the current

position of the ListIterator.
int previousIndex() Returns index of previous item (-1 if none).
void add(o) Insert object o just left of the current position.
void set(o) Replaces the last item returned by last successful next() or

previous() with object o …providing there were no intervening
add or remove operations.

44-3

Creating an iterator:

An iterator object (either Iterator or ListIterator) is created in the following way:

Code example:
 List lst = new ArrayList(); //first, create a List object
 ListIterator itr = lst.listIterator(); //now we have the object we want, itr.

//The position of the ListIterator is at the head of the list (preceding first object)

Special usage of the for-loop:

It is possible to use either an Iterator or a ListIterator object directly with a for-loop.

Code example:
List lst = new ArrayList();
…add some items to the list…
ListIterator itr = lst.listIterator();

for(Integer iw = (Integer)itr.next(); itr.hasNext(); iw = (Integer)itr.next())
{
 …do something using iw…
}

Using type parameters with an iterator:

Notice in the following code example a cast is required in the last line even when type
parameters are used to instantiate the ArrayList object:

Code example:
 ArrayList<String>aryLst = new ArrayList<String>();
 aryLst.add("hello");
 aryLst.add("goodbye");
 Iterator itr = aryLst.iterator();
 String s = (String)itr.next(); //Won’t compile without this cast

If the iterator is built using a type parameter, the cast is not required:

Code example:
 ArrayList<String>aryLst = new ArrayList<String>();
 aryLst.add("hello");
 aryLst.add("goodbye");
 Iterator<String>itr = aryLst.iterator(); //Type parameter used here
 String s = itr.next(); //Cast not required

Although the above two examples used Iterator, the same is also true for ListIterator.

Enhanced for-loop example:
 ArrayList<String>aryLst = new ArrayList<String>();
 aryLst.add("hello");
 aryLst.add("goodbye");

 for(Iterator iw : aryLst) //An iterator is not explicitly created here; however, the
 { … } // code behind the enhanced-for uses an iterator to step
 // through the items in the list.

44-4

Warning:

• When running an Iterator or ListIterator on a list, don’t modify the list with List
methods. Errors may result.

• Also, it’s not a good idea to simultaneously have two Iterators and/or ListIterators where
both of them modify the list in some way. Errors may result.

Exercise A on Lesson 44

Fill in the blanks in the following table. A comma will indicate the position of the ListIterator
whose methods are shown in the left column. Assume that we begin with a list of objects x, y, z,
and j as shown in the first line of the table. A few answers are given so that you will know if you
are getting them right as you go.

Method Current Position after
method executes

State of List after
method executes

Value Returned

 0 ,x y z j
hasNext()
remove()
next()
previous()
remove()
add(y)
next()
next()
next()
hasNext() 4 y y z j, false
hasPrevious()
previous()
remove()
previous()
set(p) 2 y y, p
add(y)
add(z)
remove()
previous()
previous() 2 y y, y z p y

44-5

Exercise B on Lesson 44

In problems 1 – 5, assume the Iterator iter has just been created for a list containing the Strings
“1” “2” “3”. For each line of code, supply information in the rem that indicates the state of the
list upon completion of code (indicate the cursor position with a comma). Also, state what’s
returned.

Object obj = iter.next(); //1.
iter.remove; //2.
obj = iter.next(); //3.
boolean state = iter.hasNext(); //4.
for (int i = 1; i <= 3; i++)
{
 iter.next(); //5.
}

In problems 6 – 10, write code segments to accomplish the tasks with ListIterator iter. Assume
the code for these problems is performed in sequence so that the result of each problem is the
starting point for the next problem. Also assume that the list initially consists of “1”, “2” “3”.
(Notice the initial position of the iterator.)

6. Move to the last item and display it.

7. Move to the first item and display it.

8. Remove the item at the middle position.

9. Replace the last item with the String “last”.

10. Insert the String “middle” at the middle position.

11. Write code that will display the last String object in a list of String objects in which we

do not know how long the list is, but we do know it’s not empty. Assume a ListIterator
object, iter has just been created. Use it in your code instead of List methods.

In questions 12 – 13 assume a List object has been created as follows:
 List myList = new ArrayList();

12. Use myList to create an Iterator object called itr.

13. Use myList to create a ListIterator object called lstIter.

44-6

Iterator/ListIterator… Contest Type Problems

1. What replaces <*1> in the code to the
right to make itr an Iterator type for the
myList object?

A. Iterator itr = iterator(myList);
B. Iterator itr = myList.iterator();
C. Iterator itr = (List) myList.iterator(

);
D. Iterator itr = List.myList.iterator();
E. None of these

2. If <*1> has been filled in correctly in
the code to the right, what is printed when
the main method executes?

A. 5.04.03.02.01.00.0
B. 543210
C. 0.01.02.03.04.05.0
D. 012345
E. None of these

import java.util.*;
public class Tester
{
 public static void main(String args[])
 {
 List<Double>dblList = new ArrayList<Double>();
 for(double d=5; d>=0; d--)
 {
 dblList.add(d);
 }

 traverseAndPrint(dblList);
 }

 public static void traverseAndPrint(List myList)
 {
 <*1>
 while(itr.hasNext())
 {
 System.out.print(itr.next());
 }
 }
}

3. What would be the appropriate
replacement code for <*1> to the right that
will cause all of the members of the linked
list to be printed?

 A. lnkLst.itr.next()
 B. lnlLst(itr)
 C. itr.next()
 D. Iterator.next(itr)
 E. None of these

4. Assuming that <*1> has been filled in
correctly, what inherited method from the
cosmic superclass Object is ultimately
called inside the println method that
converts the contents of the returned
Objects to a printable form?

 A. hashCode()
 B. equals()
 C. clone()
 D. toString()
 E. None of these

public static void doSomething(LinkedList lnkLst)
{

Iterator itr = lnkLst.iterator();

while(itr.hasNext())
{
 System.out.println(<*1>);
}

}

44-7
5. What would be the replacement code for <*1> to
the right in order that items be removed from the
list?

 A. itr.remove()
 B. Iterator.itr.remove()
 C. lst.remove()
 D. itr.remove(lst.next())
 E. More than one of these

6. What is the output of the code to the right?

 A. you
 B. Hellotoyou
 C. []
 D. [you]
 E. Nothing is printed

7. What would be the resulting change in the output
if ArrayList in the code to the right was replaced
with LinkedList?

 A. No change
 B. List would print in reverse order
 C. Illegal, would not compile
 D. Nothing would be printed
 E. None of these

8. What is the running time of the loop to the right
containing <*1> if there are n items in the list?

 A. O(1) B. O(n) C. O(n2) D. O(log n)
 E. None of these

List<String>lst = new ArrayList<String>();
String s[] = “Hello to you”.split(“\\s”);
for(int j = 0; j < s.length; j++)
{

lst.add(s[j]);
}

Iterator itr = lst.iterator();
for(itr.next(); itr.hasNext(); itr.next())
{

<*1>;
}
System.out.println(lst);

9. What replaces <#1> in the code to the right so
that all floating point numbers in myLst are printed?

A. Double d = itr.next();
B. Double d = (Double)itr.next();
C. Double d = <Double>itr.next();
D. Double d = (Double)myLst.next();
E. More than one of these

10. What other type objects could be added to
myLst?

A. Float
B. String
C. Integer
D. More than one of these
E. None of these

ArrayList<Double>myLst = new
 ArrayList<Double>();
myList.add(101.24);
 //…add more doubles…

Iterator<Double>itr = myLst.iterator();
while(itr.hasNext()
{

<#1>
System.out.println(d);

}

44-8

Project… Big Bucks Revisited

Look back in Lesson 43 at the BigBucks Project. Load that project and modify it so that you use
a ListIterator object to add BankAccount objects to the list. Then use the ListIterator object to
iterate through the list and identify the account with the largest balance. The output will be
exactly as it was for the previous project. See the code below for suggested modifications in bold
print.

import java.io.*;
import java.util.*;
import java.text.*; //for NumberFormat
public class Tester
{
 public static void main(String args[])
 {
 NumberFormat formatter = NumberFormat.getNumberInstance();
 formatter.setMinimumFractionDigits(2);
 formatter.setMaximumFractionDigits(2);

 String name;
 ArrayList aryLst = new ArrayList();

 …Create a ListIterator object called iter…
 do
 {
 Scanner kbReader = new Scanner(System.in);
 System.out.print("Please enter the name to whom the account belongs. (\"Exit\" to abort) ");
 name = kbReader.nextLine();

 if(!name.equalsIgnoreCase("EXIT"))
 {
 System.out.print("Please enter the amount of the deposit. ");
 double amount = kbReader.nextDouble();
 System.out.println(" "); //gives an eye pleasing blank line between accounts

 BankAccount theAccount = new BankAccount(name, amount);
 …Use iter to add theAccount to the list…
 }
 }while(!name.equalsIgnoreCase("EXIT"));

 //Search aryLst and print out the name and amount of the largest bank account
 BankAccount ba = use iter to get the last bank account in the list
 double maxBalance = ba.balance; //set last account as winner so far
 String maxName = ba.name;
 while(…use iter to see if we should continue looping…)
 {
 …Step through all objects and decide which has the largest balance…
 }

 System.out.println(" ");
 System.out.println("The account with the largest balance belongs to " + maxName + ".");
 System.out.println("The amount is $" + formatter.format(maxBalance) + ".");
 }
}

45-1

Lesson 45….. Comparable and Comparator Interfaces

The purpose:

The purpose of both the Comparable and Comparator interfaces is to enable us to
compare objects.

Comparable Interface:

The Comparable interface contains only one method and is specified in java.util.Arrays:

public interface Comparable
{

int compareTo(Object otherObject); // a.compareTo(b)…returns a neg number if
//a < b; returns a pos number if a > b; returns
//0 if a = b.

}

Comparing objects:

The most obvious standard Java class that implements the Comparable interface is the
String class. You can implement Comparable for your own classes too. Following is an
example of a BankAccount class in which we will implement Comparable. First, we must
decide what it means to compare two bank accounts.

1. Do we mean to compare the dates of when the two accounts were opened?
2. Do we mean to compare the amount on deposit (the balance)?
3. Do we mean to compare a “flaky factor” (number of times the account was

overdrawn)?

For our example we will compare the amount on deposit (the balance) since this seems
the most natural; however, it should be emphasized that we can define the comparison
in any way we might desire.

First, let’s examine how we will call this compareTo method. Assume that in some Tester
class we have the following code.

 //Create an account called myAccount with a balance of $40.
 BankAccount myAccount = new BankAccount(“Hilary”, 40);

 //Create an account called yourAccount with a balance of $135.
 BankAccount yourAccount = new BankAccount(“Kallie”, 135);

 //Now, compare these two objects using the compareTo method
 int j;
 j = myAccount.compareTo(yourAccount);

 // If we test j with an if-statement we should see that it’s a negative number since
 // the balance in myAccount, 40, is less than the balance in yourAccount, 135.

And now here is the BankAccount class in which we will implement the Comparable
interface:

45-2
public class BankAccount implements Comparable
{
 public BankAccount(String nm, double bal) //Constructor
 {
 name = nm;
 balance = bal;
 }
 . . . other methods . . .

 public int compareTo(Object otherObject)
 {
 //otherObject is passed in as an Object type so let’s convert it into

//a BankAccount type object.
BankAccount otherAccount = (BankAccount) otherObject;

int retValue;
if (balance < otherAccount.balance)
{
 retValue = –1;
}
else
{
 if (balance > otherAccount.balance)
 {
 retValue = 1;

}
else
{
 retValue = 0;
}

}
return retValue;

 }
 public String name;
 public double balance;
}

You may be concerned that the following line of code in Tester,
 j = myAccount.compareTo(yourAccount);

is incompatible with the following line of code (the signature of the compareTo method)
 public int compareTo(Object otherObject),

since yourAccount is a BankAccount object and otherObject is of type Object. This is not
a problem since any type object can be stored in an Object type object. However, if you
wish to store an Object type object in some other object it must be cast.

Using Comparable with wrapper class numerics:

Integer and Double type variables work directly with the compareTo method as shown in
the following examples:

45-3
Integer example:

Integer x = 5; //pre Java 5.0, Integer x = new Integer(5);
Integer y = 17; //pre Java 5.0, Integer y = new Integer(17);
System.out.println(x.compareTo(y)); //negative number

Double example:

Double x = 52.5; //pre Java 5.0, Double x = new Double(52.5);
Double y = 11.8; //pre Java 5.0, Double y = new Double (11.8);
System.out.println(x.compareTo(y)); //positive number

Casting Object type objects to Comparable:

Suppose you have the following type method that receives an Object type parameter. The
reason we receive an Object type is so as to make this method as general as possible, i.e.,
so it can receive any type object:

 public static void theMethod(Object obj)

{ }

There is, however, a problem if we wish to use obj with a compareTo method in the code
portion of theMethod. Object does not implement the Comparable class nor does it have
a compareTo method. There are two ways to solve this problem:

 Receive obj as a Comparable object :
 public static void theMethod(Comparable obj)

 Cast obj as Comparable:
 public static void theMethod(Object obj1)
 {
 …some code…
 //assume obj2 is also of Object type
 int c = ((Comparable)obj1).compareTo((Comparable)obj2);
 //Notice the nesting of the parenthesis above
 …some code…
 }

Using the compareTo method for sorting

Recall from Lesson 19 that we used Arrays.sort(a) to sort a numeric array. We use
exactly this same syntax to sort an array of objects if the class for those objects has
implemented the Comparable interface. To sort the array named ba_array of type
BankAccount in which Comparable has been implemented, simply issue the command:

 Arrays.sort(ba_array);

Comparator Interface:

Occasionally, we might need a compareTo method in a class that we don’t own or is
otherwise impossible for us to modify. Or, perhaps there is already a compareTo method
in the class of interest; however, we might want to sort objects in a way different from the
standard specifications for the compareTo method. In these cases we need a different
way. That alternative way is provided with the Comparator interface.

The Comparator interface also has only one method:

45-4

public interface Comparator
{
 int compare(Object firstObject, Object secondObject);

// Returns a neg number if firstObject < secondObject;
// Returns a pos number if firstObject > secondObject;
// Returns 0 if firstObject = secondObject.

}

This Comparator interface is generally used to declare a Comparator object (let’s call it
comp) that could then be used to sort using either:

1. Arrays.sort(a, comp); //Sorts the a[] array of objects in ascending order. This
 //method is overloaded. There is also a single parameter
 //version presented in Lesson 19

2. Collections.sort(al, comp); //uses a merge sort and sorts the ArrayList al

Comparator example:

As an example let’s use a BankAccount class again, but this time without implementing
any interface.

public class BankAccount
{
 public BankAccount(double bal)
 {
 balance = bal;
 }
 . . . other methods . . .

 public double balance;
}

We will now need to create a BankAccount comparator class; let’s call it BA_comparator.
Notice this one does implement the Comparator interface.

import java.util.*; //necessary for Comparator interface
public class BA_comparator implements Comparator
{
 public int compare(Object firstObject, Object secondObject)
 {
 BankAccount ba1 = (BankAccount) firstObject;
 BankAccount ba2 = (BankAccount) secondObject;

int retValue;
if (ba1.balance < ba2.balance)
{
 retValue = –1;
}
else

45-5

{
 if (ba1.balance > ba2.balance)
 {
 retValue = 1;

}
else
{
 retValue = 0;
}

}
return retValue;

 }
}

Following is code for a Tester class in which we would sort an array of BankAccount
objects:

//Create an array, BankAccount[]
BankAccount ba[] = new BankAccount[500];
ba[0] = new BankAccount(128);
ba[1] = new BankAccount(1200);
ba[2] = new BankAccount(621);
. . .

// Now create a comparator object using the BA_comparator class above.
Comparator comp = new BA_comparator();

//Sort the array
Arrays.sort(ba, comp);

Sorting contents of a List object:

Similarly, to sort an ArrayList object (also works for LinkedList and Vector objects):

 ArrayList recipeList = new ArrayList();
 …some code to add Recipe objects to the list…

 // This assumes we have already written another class called
 // RecipeComparator (in which we compare calories) that is similar to the

// BA_comparator class above.
 Comparator comp = new RecipeComparator();

 //Now do the sort
 Collections.sort(recipeList, comp); //Makes it possible for iterator to step through

 //the list in the prescribed order.

This ArrayList can also be sorted using Collections.sort(recipeList); if the objects
comprising the list implement the Comparable interface and have an appropriate
compareTo method.

45-6

The most difficult objects to compare are images. For an enrichment activity, see Appendix U in
which an activity is described that involves scanning a printed document and then applying OCR
(optical character recognition) software.

Adapting to either Comparable or Comparator

There are occasions in which we wish create a class where there is a need to compare two
objects and we have no knowledge ahead of time of whether the objects to be compared
are Comparable or if a comparator is provided. The desire is to make our class as general
as possible so as to adapt to either possibility. Here is how to do it:

• In the constructor for the class, receive as a parameter a Comparator object. A
null may possibly be passed for this parameter in case the objects used in the class
are Comparable rather than having a comparator. Initialize a state variable with
this Comparator object as shown below (even if a null is passed):

public YourClass(…other parameters as needed…, Comparator cp)
//Constructor
{

…
cmptr = cp;
…

}

//State variables
Comparator cmptr;
…

• Create a method in which the comparison will be done. Assuming that the objects

to be compared are of the Object type, the method will receive two parameters,
obj1 and obj2, both of Object type. The method will return an integer that is:

o less than 0 if obj1 < obj2
o greater than 0 if obj1 > obj2
o 0 if obj1 equals obj2

It is assumed that the cmptr object adheres to these same rules if it is not null. The
method shown below implements all these ideas.

private int compareObjects(Object obj1, Object obj2)
{
 if(cmptr = = null)

{ return ((Comparable)obj1).compareTo(obj2); }
else
{ return cmptr.compare(obj1, obj2); }

}

• Call the compareObjects methods when a comparison of two objects is needed.

45-7

Exercise for Lesson 45

1. What is the central purpose of both the Comparable and Comparator interfaces?

2. Name a standard Java class that implements the Comparable interface.

For problems 3 – 4, consider the following PoochyPavy class:

public class PoochyPavy implements Comparable
{
 public PoochyPavy(int k)
 {
 value = k;
 }

public int compareTo(Object nerd) //This method doesn’t follow the normal rules
{
 PoochyPavy pp = (PoochyPavy) nerd;

 int r;
 if (value = = 6 * pp.value)
 {
 r = 136;
 }

else
 {
 r = -137;
 }
 return r;
}

…other methods…

public int value;

 }

3. PoochyPavy mpp = new PoochyPavy(30);
PoochyPavy vvv = new PoochyPavy(5);
System.out.println(mpp.compareTo(vvv)); //What’s printed?

4. Of course the above implementation of compareTo is ridiculous. If it had been done
correctly, what would have been printed in #3 above?

45-8

5. Rewrite the code for the compareTo method in PoochyPavy so that it works according to

the specifications in the Comparable interface.

6. Suppose you have an array of objects, obj[]. Also, assume a Comparator class
implementing Comparator has been created and that its name is CompClass. Write code
that will let you sort the obj[] array using the sort method of the Arrays class. Assume
that CompClass appropriately compares two obj objects.

7. Realizing that if String stringA comes alphabetically before String stringB, then it can be said that
said that stringA < stringB….what is printed by the following?

String s1 = “larry”;
String s2 = “curly”;
if (s1.compareTo(s2) > 0)
{
 System.out.println(“ABC”);
}
if (s2.compareTo(s1) = = 0)
{
 System.out.println(“XYZ”);
}
if (s1.compareTo(s2) < 0)
{
 System.out.println(“Yes”);
}

8. Assume that you have written a date class, called TheDate, that implements Comparable.
Its compareTo method correctly compares dates where an earlier date is considered “less
than” a later date. Consider the creation of the following two objects:

TheDate date1 = new TheDate(“11/25/2003”);
TheDate date2 = new TheDate(“12/03/1945”);

 What will date2.compareTo(date1) return?

9. Monster munster= new Monster(“Herman”);
Object myObj = munster;
Monster myMonster = myObj; //Modify this line so it will work.

10. On your own paper, write a class called Vaulter that has two state variables…. name, a
String, and highest_vault, an integer. The constructor should allow a person’s name to be
passed in (and then handed-off to name) and also a number that represents in inches that
person’s highest vault (pass it off to highest_vault). Furthermore, this class implements
the Comparable interface.

45-9

11. Write code that will compare two Integers p and q and print one of three things… “p>q”,

“p<q”, or “p=q”.

12. Repair the following code so that it will work.

public static void doSomething(Comparable ob, Object job)
{
 …some code…
 String s = ob.compareTo(job);
 …some code…
}

13. Repair the following code so that it will work.
public static void doSomething(Object ob, Comparable job)
{
 …some code…
 String s = ob.compareTo(job);
 …some code…
}

45-10

Comparable/Comparator… Contest Type Problems

1. What replaces <*1> in the code to the
right so that the methods of the Car class are
forced to include those of the Comparable
interface?

A. (Comparable)
B. implements Comparable
C. extends Comparable
D. is Comparable
E. None of these

2. Which of these signatures represents the
method that must be added to the Car class
so that it implements the Comparable
interface?

A. public int equals(Object o)
B. public boolean equals(Object o)
C. public boolean compareTo(Object o)
D. public int Comparable(Object o)
E. None of these

public class Car <*1>
{
 //code not shown
}

3. What replaces <*1> in the code to the
right to determine if obj[mid] is the same as
the object being searched for?

A. comp = = 0
B. !comp
C. comp = = -1
D. comp > 0
E. None of these

4. What is replacement code for <*2> in the
code to the right to determine if obj[mid] is
smaller than lookFor?

A. !comp
B. comp > 0
C. comp = = -1
D. comp = = 0
E. None of these

//Binary Search
//Return true if Object lookFor is found in the obj
//array(ascending order)…otherwise false.
public static boolean bSrch(Comparable[] obj, Object
 lookFor)
{
 int start=0, end=obj.length-1;
 int mid;
 do
 {
 mid=(start + end) / 2;
 int comp = obj[mid].compareTo(lookFor);
 if(<*1>)
 return true;
 else if(<*2>)
 start = mid + 1;
 else
 end = mid – 1;
 }while(start <= end);
 return false;
}

5. Which of the following is possible as the return value of s1.compareTo(s2) if s1 is a lower case
String, s2 is an upper case String, and with s1 coming before s2 in the dictionary?

 A. 2 B. 0 C. -1 D. “<” E. None of these

6. Which of the following is not a subclass of Object?

 A. String B. Comparable C. Both A and B D.Integer E. None of these

45-11

Project… Sorting BankAccount Objects

Back in Lesson 43 we created a BigBucks project. In Lesson 44 we modified it and called it
the ListIterator project. We are going to modify it yet again. Of primary interest is the
BankAccount class. It will now include a compareTo method that we will use to sort an array
of BankAccount objects.

First, add the compareTo method to the BankAccount class. This method is given on page 45-
2 of this lesson. Don’t forget to designate implements Comparable in the class signature.

Next, modify the Tester class as detailed below.

import java.io.*;
import java.util.*;
import java.text.*; //for NumberFormat
public class Tester
{
 public static void main(String args[])
 {

 NumberFormat formatter = NumberFormat.getNumberInstance();
 formatter.setMinimumFractionDigits(2);
 formatter.setMaximumFractionDigits(2);

 String name;
 int j;
 Create a BankAccount object array ba[], length 5
 for(j =0; j < ba.length; j++)
 {

 Scanner kbReader = new Scanner(System.in);
 System.out.print("Please enter the name to whom the account belongs. ");
 name = kbReader.nextLine();

 System.out.print("Please enter the amount of the deposit. ");
 double amount = kbReader.nextDouble();
 System.out.println(" "); //gives a blank line between accounts

 Instantiate object ba[j] using name and amount

 }

 Sort the ba array using the sort method in the Arrays class

 Print the ordered array in this format
 Harry Houdini >>> 298.44

 }
}

The following is a typical run:

45-12

Please enter the name to whom the account belongs. Bill Gates
Please enter the amount of the deposit. 473.92

Please enter the name to whom the account belongs. George Bush
Please enter the amount of the deposit. 3873.20

Please enter the name to whom the account belongs. Colin Powell
Please enter the amount of the deposit. 379.23

Please enter the name to whom the account belongs. Jim Carey
Please enter the amount of the deposit. 372.82

Please enter the name to whom the account belongs. Dennis Quaid
Please enter the amount of the deposit. 3721.49

Jim Carey >>> 372.82
Colin Powell >>> 379.23
Bill Gates >>> 473.92
Dennis Quaid >>> 3,721.49
George Bush >>> 3,873.20

Project… Sorting BankAccount Objects Alphabetically
Modify the last project so that it sorts alphabetically on the names instead of on the balances in
the accounts. The only thing that needs to be changed is the compareTo method in the
BankAccount class. The output should appear as follows:

Bill Gates >>> 473.92
Colin Powell >>> 379.23
Dennis Quaid >>> 3,721.49
George Bush >>> 3,873.20
Jim Carey >>> 372.82

Project… Sorting BankAccount Objects using a Comparator
Modify the last project so that it again sorts on the balances in the accounts; however, this time
we will use a Comparator object. Delete the compareTo method from the BankAccount class, and
eliminate implements Comparable from the class signature. Create a Comparator class and call
the Arrays.sort method as detailed on pages 45-4 and 45-5. The output will appear as follows:

Jim Carey >>> 372.82
Colin Powell >>> 379.23
Bill Gates >>> 473.92
Dennis Quaid >>> 3,721.49
George Bush >>> 3,873.20

Document all aspects of your project using javaDoc as described in Appendix AE. View the
following link to see how your final documentation will appear:

http://www.bluepelicanjava.com/javaDoc/index.html

http://www.bluepelicanjava.com/javaDoc/index.html

46-1
Lesson 46….. HashSet/TreeSet

Pros and cons:

We saw the List interface applied to the ArrayList, LinkedList, and Vectors classes. These
lists are all ordered in the sense that an iterator accesses the items of the list in the same
order in which they were entered. The one downside of using a Set (and also Maps) as
compared to Lists is that the items are stored (and accessed) in an order according to how
the software wants to do it. They are not stored in the order in which they were entered.
However, Sets do offer a great advantage when working with sets of data in which we
might need to take the intersection or union of those sets. These things, while possible
with a List, would be awkward to implement. And finally, unlike a List, a Set does not
permit duplicate elements (see the add method below).

Set interface:

The most common methods of the Set interface in java.util.Set are given by:
Method Signature Action
boolean addAll(Collection c) Adds specified element (typically another set) to this

set if it is not already present. Returns true if changes
to the set are made. (Use addALL to find union.)

boolean add(Object obj) If the object equivalent is not in the set, then obj is
added to the set and a true is returned ; otherwise, a
false is returned and nothing is added to the set. Note
that arrays can be added to a set since an array is an
object. (Duplicate items are not permitted in the set.)

void clear() Removes all objects from the set.
boolean contains(Object obj) Returns true if obj is in the set … otherwise, false.
boolean isEmpty() Returns true if the set is empty … otherwise, false.
Iterator iterator() Returns an Iterator object for this set.
boolean removeAll(Collection c) Removes from this set all of its elements that are

contained in Collection c. Returns true if changes to the
set are made.

boolean remove(Object obj) If obj is in the set, it is removed and a true is returned,
… otherwise a false is returned.

boolean retainAll(Collection c) Retains only the elements in this set that are contained
in the Collection c. Returns true if changes to the set
are made. (Use retainAll to find intersection.)

int size() Returns the number of objects currently in the set.
Object [] toArray() Returns an Object array containing all the elements in

this set.

As with the List interface, notice that only objects of type Object are stored in the set.
The Set interface alone won’t do anything. By definition, all methods are abstract (no
implementing code). What we need are some implementing classes.

Implementation:

There are two classes that implement the Set interface. Each has its own rules for
determining the order in which objects are stored. Remember, the items will be stored in
the order it wants, not the order in which we add them.

1. HashSet …a hash code is computed for each object and then the items are stored
in the order of these hash codes. We will not concern ourselves with these hash
codes except to say that when an object is added to a HashSet, the method

46-2
hashCode() inside the Object class is called. (Set s = new HashSet() will create a
new HashSet object.)

2. TreeSet … items are stored in a tree structure that result in an iterator

encountering the items in a natural order (alphabetical, etc.). (Instantiate with Set
s = new TreeSet().) One of the constructors of the TreeSet class accepts a
Comparator object. Thus, an iterator will encounter the stored items in an order
specified by that Comparator (Instantiate with Set s = new TreeSet(c); where c is
a Comparator object.)

Both HashSet and TreeSet have constructors that accept a Collection object. Use such
a constructor to make a copy of a Set (example: Set setNew = new TreeSet(setOld);).

Type parameters:

While on the subject of instantiating Set objects it should be mentioned that Java 5.0+
allows type parameters. For example, consider the following in which a TreeSet object is
created, and to which only wrapper class integers may be added:

TreeSet<Integer>s = new TreeSet<Integer>();

This insures “type safety” and would result in a compile time error if we ever tried to add
some other type object to s. This concept is similar to templates in c++. Type parameters
ordinarily remove the burden of casting retrieved Object type objects back to their
original type. However, with a set, objects can only be retrieved with an iterator, but still
must be cast unless the iterator also uses type parameters (see page 44-3).

Accessing items in the set:

How do we access the items in our set? We use an Iterator. Notice that one of the
methods above allows us to create an Iterator for our set. It is important to note that we
get the Iterator and not a ListIterator. After all, a ListIterator would be for a List and
what we have here is a Set …, duh. Therefore, we see that the items in a set are not
accessed by index (as is done with the ListIterator).

Recall that an Iterator has only three methods:
1. hasNext()
2. next()… we are especially interested in this one since it returns the Object

following the current position of the Iterator.
3. remove()

Printing a set:

Use System.out.println(s); to print Set s. Its toString method typically yields something
like “[a, b, c, d]” where a, b, c,… represents the objects stored in s. Note the use of square
brackets.

Exercise for Lesson 46

1. In what ways does a Set differ from a List?

2. How do you visit and print all items in a Set? Show code if you like.

46-3
3. Suppose you want to work with a set of integers. How would you go about adding

primitive integer type variables to Set s?

4. What two classes implement the Set interface?

5. How would you go about creating an Iterator for a Set called s?

6. What are the three methods of an Iterator object?

7. Why is the performance of a List object fundamentally worse than that of a Set object?

8. What are two ways to determine if a Set s is empty?

9. If Set s has the following attempts at adding Integer equivalents to it, what is the value of
s.size()? {5,-18, 2, 5, -1, 5}

10. Show how to use the removeAll method to completely empty Set s.

Project… HashSet/Intersection
Consider the following two sets:

s1 = {“Bill”, “Larry”, “Adolph”, “Regina”, “Susie”}
s2 = {“Larry”, “Jack”, “Alice”, “June”, “Benny”, “Susie”}

Clearly, the intersection of these two sets is {“Larry”, “Susie”}. Your job is to create a class
called Hash_Set whose main method finds this intersection. Make the indicated modifications in
the code below to accomplish this:

import java.util.*; //we need java.util.Set, java.util.HashSet, and java.util.Iterator
public class Hash_Set
{

 public static void main(String args[])
 {

 Set s1 = new HashSet(); //Create s1
 s1.add("Bill");
 …
 Set s2 = new HashSet(); //Create s2
 s2.add("Larry");
 …
 //Build the intersection set
 Modify s1 to be the intersection using the retainAll method

 //Print the intersection set
 Create iter1, an Iterator for s1
 while(???)
 { Use iter1 to cycle through all objects in s1 and then print them. }

 }
}

If all occurrences of HashSet above are changed to TreeSet, you will get exactly the same results
except they will print in a different order.

46-4

Project… HashSet/Union

Modify the Intersection project so as to make s1 the Union of s1 and s2. Make use of the method
addAll to accomplish this.

The output of your program should yield the following set (the order is not important):

 {“Larry”, “Jack”, “Alice”, “June”, “Benny”, “Susie”, “Bill”, “Adolph”, “Regina”}

Project… Don’t Make Me Take That Final!

Miss Informed has a policy of allowing her students to be exempt from her final exam if certain
criteria have been met. First, a student must have made 89 or above in all his or her classes.
Second, he or she must have had no discipline referrals to the principal’s office. Shown below
are the contents of a typical data file that she would need to analyze to see if students are exempt:
 (continued)

12 9
Bob English 98
Larry English 92
Alice English 96
Wilbur English 93
Bob Math 91
Larry Math 99
Alice Math 99
Wilbur Math 90
Bob History 87
Larry History 90

Alice History 98
Wilbur History 94
Pete Jan 21
Pete Jan 22
John Feb 4
Bob Feb 19
Pete Mar 8
Jack Mar 20
Alice Mar 28
Fred April 5
Sally May 4

The first line of data contains two integers. The first integer, 12 in the example, indicates the
number of lines of grade data that follows. The second integer, 9 in the example, indicates the
number of lines of discipline data that follows the grade data. The resulting output for this data
(required in alphabetical order) represents the students that are exempt:

Larry
Wilbur

Note that extraneous information is given. It is not necessary to know the course name or the
date of a discipline referral. Produce the required output by using a set in your program in which
you add names to the set if they have an A in a course and then remove them if a grade below 90
is encountered. Then, as you cycle through the discipline data, remove any names from the set
that you encounter there. Finally, use an iterator to cycle through the set and print the names. If
you use the TreeSet class, the names will automatically be in alphabetical order.

46-5

HashSet/TreeSet… Contest Type Problems

1. Which of the following replaces <*1> in
the code to the right so as to determine whether
Set s1 is a subset of Set s2?

A. !s2.contains(itr.next())
B. s2[itr.next()] = = false
C. s2.contains(itr.next())
D. s2.add(itr.next())
E. None of these

2. Assume <*1> has been filled in correctly.
Which of the following checks whether Set s1
and Set s2 contain the same elements?

A. subset(s1, s2) && subset(s2, s1)
B. (s1.compareTo(s2) = = 0)
C. Both A and B
D. subset(s1,s2) || subset(s2,s1)
E. None of these

//This method is in the class that implements Set
public int compareTo(Object obj)
{
 … Code that returns a 0 if the sets are identical,
 … returns –1 if they are not identical.
}

//This method is in some other class
public static boolean subset(Set s1, Set s2)
{
 Iterator itr = s1.iterator();
 while(itr.hasNext())
 {
 if (<*1>)
 return false;
 }
 return true;
}

3. What replaces <*1> in the code to the right
so that an object implementing the Set interface
is created?

A. new HashSet()
B. new TreeSet()
C. new BinaryTreeSet()
D. new SetTree()
E. More than one of these

4. Assume that <*1> has been filled in
correctly. If List lst contains the wrapper class
equivalents of the elements below, what is
returned by the static method call total(lst)?

 {18 97 5 3 22}

 A. 8 B. 7 C. 6 D. 5

 E. None of these

public static int total(List theList)
{
 Set st = <*1>;
 Iterator iter = theList.iterator();
 while(iter.hasNext())
 {
 st.add(iter.next());
 }
 st.add(new Integer(3));
 st.add(new Integer(18));
 int tot = st.size();
 return tot;
}

5. Which Object class method is called when the HashSet add() method is called?

 A. compareTo() B. new hashCode() C. hashCode()

 D. new Hash() E. None of these

46-6

6. Which of the following types is capable of producing an object that could be used to “step through” the
members of a Set, one element at a time?

 A. List B. Iterator C. String D. Map E. None of these

7. Which of the following is a valid declaration of a
data member of a Store class? This data member is to
hold an arbitrarily large number of Inventory objects.

 A. private Set merchandise = new Set;

B. private Set merchandise = TreeSet(Inventory);
C. private Set merchandise = new HashSet();
D. private Inventory[] = new Inventory[];
E. More than one of these

public class Inventory
{
 public Inventory(double price, String item)
 {
 this.price = (price>0)?value : .01;
 this.item = item;
 }

 public double getPrice()
 {
 return price;
 }

 public String getItem()
 {
 return item;
 }

 private double price;
 private String item;
}

47-1
Lesson 47….. HashMap/TreeMap

The nature of a map:

A map is like a mathematical function, i.e., a set of points { (x1, y1), (x2, y2), …}. With
a map we call the x numbers the “keys” and the y numbers the “values”. However, with a
map we must use objects instead of primitive numbers for both keys and values.

Consider the following map arrangement (people and their favorite colors) of keys and
values:

Keys

1. Keyed list

Values
Romeo-------------- > red
Adam--------------- > green
Eve-------------------> blue
Juliet-----------------> blue

Just as with a mathematical function, each key may only associate with one value;
however, each value may associate with several keys. In plain English, that means that in
our example above, each person can have only one favorite color. However, notice that
blue is the favorite color of two different people. In even “plainer” English, keys can’t be
repeated, values can.

Different names:

A map goes by several different names including the following:

2. Dictionary
3. Association list
4. Table (this one is very common)

 Following is a table that illustrates the mapping of keys to values:
Key Value
“Name” “Alfred E. Neuman”
“Job title” “Latrine Orderly”
“Age” 19
“Sex” “M”
“Hourly wage” 6.14

Both keys and values are added to a map in the form of objects. Notice in the
above table that three of the values are String objects, one must be a wrapper class
Integer and the last must be a wrapper class Double.

Map interface:
The most commonly used methods of the Map interface are as follows:

Method Signature Action
void clear() Removes all key-value pairs from the map
boolean containsKey(Object key) Returns true if the indicated key is present…otherwise,

false.
boolean containsValue(Object value) Returns true if the indicated value is present…otherwise,

false.
Set entrySet() Returns a Set of Map.Entry objects. These are key-value

pairs, and the only way to obtain a reference to these
objects is from an iterator of this set. (Note that Entry is
an inner interface of Map.)

47-2
Object get(Object key) Returns the value associated with the indicated key …

returns null if key is not present.
boolean isEmpty() Returns true if the map is empty…otherwise, false.
Set keySet() Returns a Set of the keys in the map. An Iterator object

can be built from this Set.
Object put(Object key, Object value) If key is already in the map, the previous value is replaced

with the new value and the previous value is returned…
otherwise, the key-value pair is added to the map and null
is returned. Notice only objects can be added to the map.

void putAll(Map m) Map m is copied into this Map replacing any duplicates.
Object remove(Object key) If key is in the map, the key-value pair is removed and the

value is returned…otherwise, returns null.
int size() Returns the number of key-value pairs in the map.
Collection values() Returns a Collection object of the values in a map.

Implementing a map:

Just as the Set interface has two classes that implement it, so does the Map interface:

1. HashMap …an iterator will encounter the keys in what may appear to be a random
order. Instantiate with Map m = new HashMap().

2. TreeMap …an iterator will encounter the keys in a “natural order” (alphabetical,
etc.). Instantiate with Map m = new TreeMap(). One of the constructors of the
TreeMap class accepts a Comparator object. Thus, an iterator will encounter the
stored items in an order specified by that Comparator (Instantiate with Map m = new
TreeMap(c); where c is a Comparator object.) Below is an example of this usage:

import java.util.*;
public class Tester {

public static void main(String args[]) {
TreeMap m = new TreeMap(new MyComparator());
… more code using m …

}

static class MyComparator implements Comparator {
 public int compare(Object obj1, Object obj2) {
 … appropriate code for desired ordering…

}
}

}

Retrieving key–value pairs:

We will now illustrate code that will output the key-value pairs in a Map object. There
are two ways to do this:

Example 1:

Map myMap = new HashMap();
myMap.put(“Mary”, 15); //Mary is 15 years old

//pre Java 5.0, myMap.put(“Mary”, new Integer(15));
…add more key-value pairs…

Set ks = myMap.keySet();
Iterator iter = ks.iterator();

47-3
while(iter.hasNext())
{
 Object key = iter.next();
 Object value = myMap.get(key);
 System.out.println((String)key + “------>” + (Integer)value);
}

Example 2:

Map myMap = new TreeMap();
myMap.put("Mary", 15);
myMap.put("Bob", 20);

Set es = myMap.entrySet();
Iterator it = es.iterator();
while(it.hasNext())
{
 Map.Entry entry = (Map.Entry)it.next();
 System.out.println(entry);
 //Instead of the above two lines we could just have,

 //System.out.println(it.next());
}
This resulting printout is as follows:

Bob=20
Mary=15

Type parameters:
It should be noted that Map objects can make use of type parameters (See Appendix AF
for the related topic of generics) since the release of Java 5.0. This is illustrated by the
following:

Map<String, Integer>myMap = new TreeMap<String, Integer>();

This forces only Strings to be used as keys and Integers to be used as values, and
thus insures “type safety”. A compile time error would result if any attempt was
made to store any object other than a String as a key or any object other than an
Integer as a value.

Type parameters also remove the burden of casting Object type objects retrieved
from a map back to their original type. Unfortunately objects retrieved from a
map using an iterator must still be cast unless the iterator also uses generics (see
page 44-3).

The toString method:
The toString method of a map object (automatically invoked with a print statement) will
return the key-values pairs in this form: {key1=value1, key2=value2, …}

Username-password pairs are perfect candidates for map applications. This is because each
username must be unique and generally we do not care what the passwords are. Possibly, in your
school you have a local area network (LAN) in which logon usernames and passwords are
required. For some enrichment activities with a LAN, see Appendix U.

47-4

Exercise A for Lesson 47
1. Write code that will create a Map object, and add the key-value pair “Sally” –“blue”.

2. What classes implement the Map interface?

3. Write code that will create an Iterator for the keys of a Map object called mp.

4. Write a line of code that will create a Map object called hoover using the HashMap

implementation.

5. How do maps differ from sets?

6. What happens when a key is used for inserting a value in a map and that key is already

present?

7. Is it possible for a map to exist with the following key-value arrangement? If not, why
not?

Key Value
23 18
19 -17
46 9
19 -19
2 180

8. How would you determine the number of key-value pairs in a map?

9. Suppose you have a Map object called tiny and you know that it has a key of type Object

called obj. Write code that will print the corresponding value.

Exercise B for Lesson 47 (advanced exercise)
Consider an automated drilling machine that automatically changes its own drill bits. This
machine can hold up to 16 different sizes of drill bits. The various sizes are held in a “tool
holder” in which the “tool positions” are labeled “T1”, “T2”, …“T16”. For each unique job,
these tool locations are loaded with specific sizes specified for that particular job. In the
ToolControl class below, Map toolLocationMap correlates each tool position with a specific drill
size. The permitted drill sizes are Integers 1 through 76.

Also, in the ToolControl class is Map drillInfoMap that correlates each drill size to a specific
DrillInfo object. The DrillInfo objects specify diameter, rpm, and feed rate as shown by the
following class:

public class DrillInfo
{
 //Constructor
 public DrillInfo(double dia, int revPerMin, double fr)

{
 diameter = dia;

rpm = revPerMin;
 feedRate = fr;
}

47-5
…other methods not shown…

 public double diameter;
public int rpm;
public double feedRate;

}

Next is our ToolControl class. In it, drillInfoMap will use Integer drill sizes 1 through 76 as the
keys and their corresponding DrillInfo objects as the values. Map toolLocationMap will use
String tool location designators “T1” – “T16” as keys and the Integer drill sizes at those
locations as values.

public class ToolControl
{
 public ToolControl() //Constructor

{
 //Populate map with all 76 drill sizes & corresponding DrillInfo objects.

drillInfoMap.put(1, new DrillInfo(.251, 4000, 1.6));
 //pre Java 5.0, drillInfoMap.put(new Integer(1), new DrillInfo(.251, 4000, 1.6));
…
drillInfoMap.put(new Integer(76), new DrillInfo(.006, 70000, 4.55));

}

… Create methods for this class in problems 1 - 5…

public Map drillInfoMap = new TreeMap();
public Map toolLocationMap = new TreeMap();

}

1. Create the setToolLocation method. It receives a tool location (example, “T2”) and drill
size, and uses them to create a new entry in Map toolLocationMap. This method should
return false if a drill already occupies this tool position; otherwise, create the map entry
and return true.

public boolean setToolLocation(String position, int drillSize){ }

2. Create the deleteToolLocation method. It receives a tool location (example, “T2”) and
deletes the corresponding entry from Map toolLocationMap.

public void deleteToolLocation(String position){ }

3. Create the getToolRpm method. It receives a tool location (example, “T2”) and returns
the rpm setting (an integer) for this tool. If there is no drill bit installed at this tool
position, return –1.

public int getToolRpm(String position){ }

4. Create the getPosition method. It receives an int drill size (1 – 76) and returns the tool
holder position (example, “T2”) at which the drill bit of this size is located. If the drill
size is not found, return “X”.

public String getPosition(int toolSize){ }

5. Create the getFeedRate method. It receives an int drill size (1 – 76) and returns the feed
rate for a drill of this size. public double getFeedRate(int drillSize){ }

47-6

HashMap/TreeMap… Contest Type Problems

1. Which of the following replaces each instance of
<*1> in the code to the right to declare class constants
that are accessible everywhere?

A. private static final int
B. static final int
C. public static final int
D. final public int
E. More than one of these

2. Which of the following builds a Map named mp
which can be used to map from restaurants to menus?

A. Map mp = new Map();
B. Map mp = new Map(Restaurant, Menu);
C. Map mp = new HashMap(Menu, Restaurant);
D. Map mp = new TreeMap(Restaurant,Menu);
E. None of these

3. Assume that Map mp has been built correctly, and
that Restaurant fojos and Menu chinese have been
built correctly. Which of these adds to Map mp the
key fojos with value chinese?

A. mp.put(fojos.name, chinese.category);
B. mp[fojos] = chinese;
C. mp.put[Chinese] = fojos;
D. mp.put(fojos, chinese);
E. None of these

4. Which of the following can be run outside class
Menu to check whether the menu associated with
Restaurant papas in Map mp is an entrée?

A. mp.get(papas).isENTREE()
B. mp.get(papas).category = = Menu.ENTREE
C. ((Menu)mp.get(papas)).isENTREE()
D. ((Menu)mp.get(papas)).category = = ENTREE
E. None of these

public class Restaurant
{
 // methods and constructors not shown

 private String name;
 private boolean fourStar;
 private int seatingCapacity;
}

public class Menu
{
 boolean isENTREE()
 {
 return category = = ENTREE;
 }

 //other methods and constructors not shown

 private String item;
 private int category;

 <*1> DESSERT = 0;
 <*1> ENTREE = 1;
 <*1> APPETIZER = 2;
 <*1> DRINK = 3;
}

5. Suppose that StudentRecord is a user-defined class that holds personal information about students.
Which of the following built-in classes can be used to make a student directory, matching each student’s
name (stored as a String) with their information?

 A. ArrayList B. TreeMap C. TreeSet D. HashSet E. More than one of these

47-7

Project… Mapping Bank Accounts

In this project we will modify the BankAccount class. It might be easiest for you if you simply
paste in code from the BankAccount class in the “Sorting BankAccount Objects Projects” in
Lesson 45. Modify that class as shown below.

public class BankAccount implements Comparable
{

 public BankAccount(String nm, double amt)
 {

 name = nm;
 balance = amt;
 accountCounter++;
 accountID = accountCounter;

 }

 public int compareTo(Object otherObject)
 {

 BankAccount otherAccount = (BankAccount)otherObject;

 int retValue;
 if(balance < otherAccount.balance)
 {
 retValue = -1;
 }
 else
 {
 if(balance > otherAccount.balance)
 {
 retValue = 1;
 }
 else
 {
 retValue = 0;
 }
 }
 return retValue;

 }

 public void deposit(double dp)
 {
 balance = balance + dp;
 }

 public void withdraw(double wd)
 {
 balance = balance - wd;
 }

 public String name;
 public double balance;
 private static int accountCounter = 0;
 public int accountID;

}

47-8

Notice that the necessary modifications are shown in bold above. It is significant that the private instance
field accountCounter is static. This insures that as new accounts are created, each gets a unique account
ID. This is important since we will use accountID’s as the keys in a map. The name of the individuals
owning the accounts should not be used as keys since several different people could have the same name.
It is a requirement of maps that the keys be unique.

Your primary job is to create a Tester class as follows. Again, you will have a big head start on this if you
paste in code from the Tester class of the project in Lesson 45.

import java.io.*;
import java.util.*;
import java.text.*; //for NumberFormat
public class Tester
{
 public static void main(String args[])
 {
 NumberFormat formatter = NumberFormat.getNumberInstance();
 formatter.setMinimumFractionDigits(2);
 formatter.setMaximumFractionDigits(2);

 String name;
 int j;
 BankAccount ba;
 Use HashMap to create a Map object called accounts
 Scanner kbReader = new Scanner(System.in);
 for(j =0; j < 4; j++) //provides for inputting 4 accounts
 {
 System.out.print("Please enter the name to whom the account belongs. ");
 name = kbReader.nextLine();

 System.out.print("Please enter the amount of the deposit. ");
 double amount = kbReader.nextDouble();
 System.out.println(" "); //gives an eye pleasing blank line between accounts

 ba = new BankAccount(name, amount);
 Use the put method to place a key-value pair in accounts. The key should be an object

version of ba.accountID. The value should be ba.
 }

 //Print all the accounts in the map
 Create a Set object called accountsSet using the keySet method of accounts
 Create an Iterator object called iter from the accountsSet object.
 while(loop through all the Iterator’s objects)
 {
 Use the next method of iter to create an Object called key.

Use the get method of accounts to retrieve the associated value and cast as BankAccount
object called ba.

 Print accountID, name, and balance in this format 3 >>> Bob Jones >>> 138.72
 }
 System.out.println(" ");

 //Ask for keyboard input...for an accountID
 System.out.print("Please enter the ID for the account that you wish to view. ");
 int id = kbReader.nextInt();

47-9

 //Print info on that account
 Convert the primitive int type id into a wrapper class version called idw.
 Use idw with the get method of accounts to retrieve the desired account…store in ba.
 Print accountID, name, and balance in this format 3 >>> Bob Jones >>> 138.72
 }
}

A typical run is shown below:

Please enter the name to whom the account belongs. Elvis
Please enter the amount of the deposit. 473.83

Please enter the name to whom the account belongs. Frank Sinatra
Please enter the amount of the deposit. 82.38

Please enter the name to whom the account belongs. Dan Blocker
Please enter the amount of the deposit. 3922.92

Please enter the name to whom the account belongs. Lacy Bertran
Please enter the amount of the deposit. 4882.03

2 >>> Frank Sinatra >>> 82.38
4 >>> Lacy Bertran >>> 4,882.03
1 >>> Elvis >>> 473.83
3 >>> Dan Blocker >>> 3,922.92

Please enter the ID for the account that you wish to view. 2
2 >>> Frank Sinatra >>> 82.38

Project… Code Talker

Consider a file called Data.txt with the following content:

13
beaver=swim
hello=fierce
spank=like
freedom=wrench
yellow=can't
whale=for
ketchup=pickles
yes=me
meter=I
foreign=state
staple=but
wood=sandwich
hand=could
meter always spank ketchup staple meter yellow beaver

The first line gives a number that specifies how many dictionary items we have. Following is
that number of pairs of words separated by an equal sign. The word to the left of the equal sign is

47-10

the “coded” word and to the right is its real meaning. Following the dictionary is a single line of
text that is to be decoded. If a coded word is in the dictionary then prints its real meaning
according to the dictionary. If a coded word is not found, then just print that word.

The output should be:

I always like pickles but I can’t swim

Use a Map object to store a pair of Strings. Let the key be the coded word and the value be its
real meaning.

Project… Histogram

Suppose we have the following single line of text in a file called Words.txt:

hello, mud, yellow, book, mud, car, bank, mud, hello, book, book, ruby, yellow, cow,
toenail, bank

Write a program that will count the number of occurrences of each word and present them in
alphabetical order as follows:

bank,2
book,3
car,1
cow,1
hello,2
mud,3
ruby,1
toenail,1
yellow,2

In writing this program it is suggested that split be used to produce an array of all the individual
words in the line of text. Create a TreeMap object and while cycling through each word in this
array, add it to the TreeMap object (The word itself will be the Key and the corresponding Value
will be a running count of how many times that words is used.) If a word is not found in the
Map, then add it and set a count Value of 1. If it’s already there, then increment the count Value.

By using a TreeMap instead of a HashMap the Keys stored in the Map will automatically
be encountered in alphabetical order as we iterate through the KeySet object produced
from the Map. This means you will need to create a KeySet object and from it create an
Iterator that you will use to step through the objects.

**
Finally, modify the program using printf so that the output is in histogram form and is formatted
as follows:

Words Frequency
bank **
book ***
car *

47-11

cow *
hello **
mud ***
ruby *
toenail *
yellow **

Project… Student Classification

Consider the following data file called StudentData.txt:

Sophomore Julie
Freshman Fred
Senior Bill
Senior Agnes
Junior Betty
Senior Jezebel
Sophomore Ahab
Junior David
Sophomore Solomon
Senior Boaz
Junior Ruth

Using a Map object, create a program that will process the file so as to produce the following
output:

Freshman(Fred)
Junior(Betty, David, Ruth)
Senior(Agnes, Bill, Boaz, Jezebel)
Sophomore(Ahab, Julie, Solomon)

The keys for the Map object should be Freshman, Sophomore, etc. (notice alphabetical order)
and the associated value for each should be a Set containing the alphabetized names of the
individuals belonging to that classification.

48-1

Lesson 48….. Flow Charts & Optimizing for Speed

A logical flow:

The following drawing is called a flow chart and is used when the program is rather
complex. It allows us to design the logical flow of a program without first getting into the
details of specific code. The flow chart below is for the purpose of inputting a number
from the keyboard (call it n) and then printing all of the numbers that divide evenly into
n. For example, if we input 6 for n, the printout would be 1, 2, 3, 6.

no

n

d = d + 1

Is
d <= n/2

?

Write the code:
We will now begin w
following do–while l

 . . .
 do
 {
 if(n %
 {

 }
 . . .

}while(d <=
. . .
start

Input n

d = 1

yes

o yes Does
d divide n

?

Print d

Print n

riting code for this flow chart. O
oop with an if inside it.

 d = = 0) //test for divisibility b

. . .

n / 2);
stop

ne of the basic structures is the

y d

48-2

Project… Divisors of a Number

Complete the code for the flow chart on the previous page. A typical screen output is as follows:

What is the number? 6
1 2 3 6

Be sure to test your program with 2,000,000,000 (two billion, a two followed by nine zeros) and
time how long it takes to run (author’s test run took 105 seconds on a very old computer).

Here is how you can make the computer calculate the time that it takes to run this
algorithm. In your code just before the algorithm begins, place this line of code:

 long startTime = System.currentTimeMillis();

This gives the time that has elapsed in milliseconds since midnight, Jan1, 1970 UTC up
until when this command was issued. Then, at the end of your algorithm, place these lines
of code:

long endTime = System.currentTimeMillis();
long elaspedTime = endTime – startTime;
System.out.println(“Your algorithm took ” + (elaspedTime)/1000.0 + “ to run.”);

While on the subject of timing, it should be mentioned that Java 5.0+ provides an
additional timing command as illustrated by the following:

long myTime = System.nanoTime();

This provides the precision (plenty of digits) for nanosecond timing but not necessarily
the accuracy (the times its returns may be incorrect to varying degrees). Presumably, Sun
Microsystems included this in the new release of Java in anticipation of incredibly fast
computers in the future and operating systems with very fine granularity.

Optimizing performance:

We are going to do some things now to optimize the time performance of this program.
Let’s look at the boolean associated with while. Notice that every time through the loop
(1 billion times) we repeatedly ask the computer to divide n by 2. We can realize a little
improvement in the running time by taking this calculation (that never changes) outside
the loop.

48-3

Project… Optimized Code for Divisors of a Number

Make the necessary modifications to move the calculation of n/2 outside the loop. Again, test
with two billion. This time the author’s time was 100 sec, a very small and not very dramatic
improvement.

An audacious claim:

Now we are going to do something really dramatic; we are going to make this code run
much faster. What if we told you it would run twice as fast? Pretty impressive, huh?
Now, suppose we said it would run ten times as fast. What about 1000 times as fast? At
this point you are probably very suspicious and are thinking, “No way! Not possible.”
Well, here is the real truth. We are going to make it run 44,000 times faster. You can
take the old run time, divide by 44,000 and see that the new run time will be only a
fraction of a second.

How is this possible? Here is how we will do it. Let’s suppose we are testing for all the
divisors of 100. First test 1 and of course it divides, so we print it. But wait! When we
divide by 1, let’s also look at its “partner,” 100 (1 divides into 100, 100 times). Let’s just
go ahead and print its partner right now.

Now test 2 to see if it divides into 100. It does, and it has 50 as its “partner,” so print both
of them. Continuing this way we also get the following pairs; 4 & 25, 5 & 20, and 10 &
10. We need not go beyond 10 (which is the square root of 100). Figure 48-1 below
illustrates this partnering, factor-pair relationship.

1 2 4 5 10 10 20 25 50 100

Figure 48-1 Factor-pairs for 100

Project… Super Optimized Code for Divisors of a Number

Modify your code to take advantage of these short cuts. Notice that the square root of 2 billion is
close to 44,721, which is close to the audacious claim of 44,000 above. In reality your code will
take a little longer than one second to run because of the overhead associated with printing a
large number of divisors on the screen. The actual calculations have, however, been speeded up
exactly as claimed.

49-1

Lesson 49….. Singly Linked List

An example of a linked list:

A linked list is by its very nature an ordered list. The order is the sequence in which we
encounter the list items as we traverse the list from its head (the start of the list) all the
way to the end. As an example of objects that have such a natural order, let’s think of the
nodes of a pipeline as it zigzags its way across the landscape. Each node will have the
following data associated with it.

• A position in feet from some starting point
• A descriptive name

In Fig 49-1 below we see such a pipeline and in Fig 49-2 its corresponding data structure
implemented as a linked list.

’ 3050’ Node 1

Hwy 35

Node 2
Tank farm Node 0

Pump station

 Fig. 49-1 A three “node” pipeline.

 Head ptr

Node 0 Ptr Node 1 Ptr Node 2 Ptr null

 Linked lis forward po ers (singl ked).

The fun

The lin
then we
not, how
type of
lesson.

Creatio
 Fig. 49-2
damental parts:
As we see from this exa
(node) has two fundame

• The various data
associated with
in feet (from som
station”, etc.

• A pointer field t

member is a ref

ked list example above
 just follow the pointer
ever, work our way ba

linked list does exist. It

n of the node objects:
Let’s now turn our atten
We will use the followi
t using only
mple a lin
ntal parts
 member

each node
e startin

hat indica
erence to

is a singly
to the nex
ckwards b
’s called a

tion to th

ng class t
ked list is a c
:
s of the object
 of the linked

g point) of our

tes the next it
 the next objec

 linked list. If
t node, and fr
ecause there
 doubly linke

e creation of t
o produce thes
inting point
hain o

… The
 list, an
 node a

em in t
t in the

 we be
om the
are no
d list an

he nod
e objec
1523
f objects in wh

se contain the
d for our exam
nd a descripti

he chain. Actu
 list.

gin traversing
re to the next o
backwards poi
d will be add

e objects for o
ts:
y lin
ich each object

 primary data
ple will be a position

on such as “Pump

ally, this data

the list from node 0,
ne, etc. We could

nting pointers. That
ressed in the next

ur pipeline example.

49-2

public class PipelineNode
{

 public PipelineNode(int pos, String descr, PipelineNode ptr) //Constructor
 {

 position = pos;
 description = descr;
 nextNode = ptr;

 }

 public int position;
 public String description;
 public PipelineNode nextNode;

}

Next, we need a class with a main method in which we will call an append method that will in
turn create node objects and link them together.

public class Tester
{

 public static void main(String args[])
 {
 //Creation of the nodes
 append(0, "Pump station");
 append(3050, "Hwy 35");
 append(4573, "Tank farm"); // 3050 + 1523 = 4573
 }

 //append a new node to the end of the list and adjust pointers
 public static void append(int pos, String descr)
 {

 PipelineNode newNode = new PipelineNode(pos, descr, null);
 if(headNode = = null) //There are no nodes yet so the node we
 { //“append” will be both the head and the tail
 headNode = newNode;
 }
 else
 {
 tailNode.nextNode = newNode; //update the old tailNode
 }
 tailNode = newNode; //specify a new tailNode

 }

 private static PipelineNode headNode = null;
 private static PipelineNode tailNode = null;

}

This Tester class doesn’t really do anything except create and link the nodes. Let’s add to
the Tester class by causing it to print the data along each node as we traverse the list from
start to finish. We will call this method traverseAndPrint.

49-3

 public static void traverseAndPrint()
{
 PipelineNode currentNode = headNode;
 int nodeNum = -1;
 do
 {

 nodeNum++;
 System.out.println("Node number: " + nodeNum);
 System.out.println("Position: " + currentNode.position);
 System.out.println("Description: " + currentNode.description);
 System.out.println(""); //gives a blank line between nodes

 currentNode = currentNode.nextNode;

 }while(currentNode != null); //We don't need to know ahead of time how many
 } //nodes there are.

Notice that traversing the loop is general in that it does not assume knowledge of how many
nodes there are. Modify the main method as follows in order to test this new method:

public static void main(String args[])
{
 //Creation of the nodes
 append(0, "Pump station");
 append(3050, "Hwy 35");
 append(4573, "Tank farm");

 traverseAndPrint ();
}

The resulting printout is as follows:

Node number: 0
Position: 0
Description: Pump station

Node number: 1
Position: 3050
Description: Hwy 35

Node number: 2
Position: 4573
Description: Tank farm

Something startling:

If we analyze what’s just happened, there is something really startling. How does the
code in traverseAndPrint know what the node objects are? Except for the instance fields
headNode and tailNode, the node objects aren’t instance fields and are, in fact, not even
named. Yet, in the traverseAndPrint method we are obviously accessing these node
objects and printing their attributes. We could still access them even if there were
hundreds of nodes.

49-4

The reason that we have access to these nodes is that they are “chained” together via the
nextNode instance field of the PipelineNode class and hence all its objects. If we have
access to the headNode in any method (and we do since headNode is an instance field)
then, via the chain, we have access to all the nodes.

Adding a node:

Now, let’s suppose we wish to add another node as shown in Fig 49-3. Notice this new
node will have index 2 and falls b old nodes 1 and 2. The project below gives
suggestion on how to do this.

3050’ Node 1
Hwy 35

ode 2, Cold Creek

P
C

T
is
d
w
in

T
li
th
n

In
n
te

Node 0
Pump station

 Fig. 49-3 A four “node” p
 becomes node 3.

roject… insert Method for Sing
reate a method with the following sign

public static void insert(int pos, S

his method will insert a new node into
 the position in feet of the new node alo
escription of the new node. The parame
hich the new node will be inserted. For
dex 32 and the old node 32 will now b

he code in this method need not addres
st. We already have a method for that, t
e possibility of indx being equal to 0, w

ew head of the list.

 all cases your code should adjust the p
ew, inserted node object. Adjust the ma
st insert.

 public static void main(String
 {
 //Creation of the nodes
 append(0, "Pump station");
 append(3050, "Hwy 35");
 append(4573, "Tank farm");

 traverseAndPrint();
 System.out.println(“******
 insert(4040, “Cold Creek”, 2
 traverseAndPrint();
 }
etween
ipeline. The new node

ly Linked List
ature:
tring descr, int indx)

the interior of our sin
ng the pipeline. The
ter indx is the index n
 example, if indx is 3
e at index 33.

s the issue of putting
he append method. Y
hich would mean tha

ointer of the node ob
in method of the Test

 args[])

 //3050 + 990 + 553

* now insert a node b
); // 3050 + 990 = 40
990’
N

Node 3
Tank farm

533’

 will be node 2, and the old node 2

gly linked list. The parameter pos
parameter descr is the word
umber of the existing node before

2, then the new node will now be at

the new node at the very end of the
our code should, however, address
t the new node is to become the

ject immediately preceding the
er class in the following way to

= 4573

efore old node 2 *******\n”);
40

49-5
The resulting printout will be as follows:

Node number: 0
Position: 0
Description: Pump station

Node number: 1
Position: 3050
Description: Hwy 35

Node number: 2
Position: 4573
Description: Tank farm

******* now insert a node before old node 2 *******

Node number: 0
Position: 0
Description: Pump station

Node number: 1
Position: 3050
Description: Hwy 35

Node number: 2
Position: 4040
Description: Cold Creek

Node number: 3
Position: 4573
Description: Tank farm

Students should not get the idea that applications of the singly linked list are limited to situations
having a geometric aspect, as does our pipeline example. For example, we could maintain an
alphabetized list of names (and associated data) using a singly linked list. The names would
simply be linked in alphabetical order.

Why use a linked list?

Finally, we examine the question of why we would ever want to use a linked list as
opposed to an ordinary array. Ordinary arrays nearly always provide better runtime
performance; however, when it comes to efficient memory usage there is a situation in
which the linked list is superior. That situation is when we are unable to predict the list’s
maximum size. In that case, the array may suffer from either of the following problems:

• If the array is dimensioned too small, we might run out of space.
• If we dimension too large, then we will waste a large portion of memory.

The way we overcome this problem is by using a linked list in which pointers (and the
object of which they are a part) only come into existence, as they are needed. Thus, it is
the dynamic creation and elimination of objects (in dynamic memory) and their
associated pointers that give a memory advantage for linked list.

49-6

Singly Linked List… Contest Type Problems

1. Given ns as an object of the class to the right, how
would you print data member s1 of the Node object that
follows ns in a singly linked chain of Node objects?

A. System.out.println(ns.s1);
B. System.out.println((ns.next).s1);
C. System.out.println(s1);
D. System.out.println((Node)ns.next.s1);
E. None of these

2. Given ns as an object of the class to the right, what
would you use to determine if ns is the last object in a
linked list?

A. if(ns = = null)
B. if(next = = null)
C. if(ns.next = = null)
D. if((ns.next).next = = null)
E. None of these

3. Which of the following would be a proper way to
instantiate a Node object if that object were to be the
last in the linked list “chain”?

A. Node nn = new Node(4, “Yes”, null);
B. Node nn = new Node(“Yes”, 4, null);
C. Node nn = new Node(null, null, null);
D. Node nn = new Node(1, “Zero”, new Node());
E. None of these

public class Node
{
 public Node(int i, String s, Node n)
 {

 v1 = i;
 s1 = s;
 next = n;

 }

 public int v1;
 public String s1;
 public Node next;
}

4. What is true concerning the traversing of a singly linked list?

A. It can only be traversed in one direction.
B. In doing a traversal while searching for a particular element, you might be unlucky and have to

traverse the entire list.
C. In doing a traversal while searching for a particular element, you might be lucky and only need to

inspect the first item.
D. All of the above
E. None of these

5. Suppose a singly linked list of Cow objects has a reference to the first object called
 headCow. Which of the following is headCow?

A. A Cow object
B. The integer 0
C. A String that gives the value of the first String field of the first object in the chain
D. A String reference
E. None of these

50-1

Lesson 50…. The LinkedList Class (doubly linked) and Stacks

In Lesson 49 we investigated a singly linked list. Here, we turn our attention to a doubly linked
list. Fig. 50-1 illustrates such linkage between the nodes of a list.

Head ptr

 r r l

Fig. 50

In this
and ma

Rather
Java. It

The Lin
method

Meth
void a
boole
void a
void a
void c
boole
Objec
Objec
Objec
int ind

boole
int las

ListIt
Objec
boole
Objec
Objec
Objec

int siz
Objec
String

Creati
Node 0 Ptr
-2 Linked list using bo

doubly linked list we c
kes some operations fa

 than develop our own
 is called the LinkedLis

 import java.uti

kedList class impleme
s of its own. Followin

od Signature
dd(int index, Object o)
an add(Object o)
ddFirst(Object o)
ddLast(Object o)
lear()
an contains(Object o)
t get(int index)
t getFirst()
t getLast()
exOf(Object o)

an isEmpty()
tIndexOf(Object o)

erator listIterator(int index)
t remove(int index)
an remove(Object o)
t removeFirst()
t removeLast()
t set(int index, Object o)

e()
t[] toArray()
 toString()

ng a stack class:
We are going to use th
First, we must discuss
trays in a cafeteria. As

Ptr Node 1 Pt
th forward and backward po

an traverse the list in either d
ster.

doubly linked list class, we w
t class, is doubly linked, and

l.LinkedList;

nts the List interface (see Le
g are the most important Lin

Description
Inserts Object o at the position
Appends o to the end of the list
Inserts o at the beginning of the
Appends o to the end of the list
Remove all elements from the
Returns true if the list contains
Returns the object at the positio
Returns the object at the head o
Returns the object at the end of
Returns the index of the first oc
right. Returns –1 if the object i
Returns true if list is empty, fal
Returns the index of the first oc
to left. Returns –1 if the object

 Returns a ListIterator object fo
Remove the object at the positi
Remove the first occurrence of
Remove the object at the head
Remove the object at the end o
Replaces the object at the posit
the old object.
Returns the number of element
Returns an array containing all
Returns [A, B, C,…] where A is

e LinkedList class to implem
 what a stack is. To understa
 trays are washed, they are p
Ptr Node 2 Pt
inting pointers (doubly lin

irection. This adds some c

ill use a class that exists a
 requires the following im

sson 42) and adds some ad
kedList methods:

specified by index.
. Returns true.
 list.
.
list.
 o.
n specified by index.
f the list.
 the list.
currence of Object o, searching

s not found.
se otherwise.
currence of Object o, searching
is not found.
r this list.
on specified by index and returns
 o, searching from left to right.
of the list and return the object.
f the list and return the object.
ion specified by index with o, the

s in the list.
 of elements in the list in the corr
 the object at the head of the list

ent yet another class, a sta
nd a software stack, think o
ut on top of the stack. As n
nul
ked).

onvenience

s part of
port:

ditional

from left to

from right

 the object.

n returns

ect order.
.

ck class.
f a stack of
ew

50-2

customers come through the line, they remove a tray from the top of the stack. A software
stack is similar. We put data on top of the stack (push), and we also remove data from
the top of the stack (pop, sometimes called pull). A data structures like this in which the
last datum in, is the first to be taken out, is called a LIFO (last in, first out). A stack is a
classic example of a LIFO.

There is also a totally different data structure in which the first datum in, is the
first to be taken out (FIFO). The queue structure is a classic example of a
FIFO (see Lesson 53). An example of a queue is a line of people waiting to buy
tickets at a box office. The first one in the line will be the first one to buy tickets
and to get out of the line. Queues can also be implemented with a linked list as the
underlying structure.

In the following, we illustrate a sequence of push and pop operations on a stack.

Operation Resulting stack Comments
 after operation
push 157.3 157.3

push 22 22 new data is added to the top of the stack
 157.3

push -18 -18
 22
 157.3

pop 22 pop returns –18 and removes from stack
 157.3

pop 157.3 pop returns 22 and removes from stack

push 500 500
 157.3

Do it with an interface:

The way we are going to specify the design of our stack class is via an interface. The
following interface gives the methods of our stack class.

public interface StackIntrfc
{
 void push(double d); //place d on top of the stack
 double pop(); //return top item in the stack and then remove from stack
 double peek(); //return the top item in the stack and leave the stack intact
 int size(); //returns the size (depth) of the stack
 void clear(); //remove all items from the stack
}

Project… StackLL Class
Create a stack class called StackLL that implements the StackIntrfc interface above (You must
enter the interface; it’s not part of Java). Use a LinkedList object as the underlying data structure.
The head of the list will correspond to the top of the stack. As you may have noted in the

50-3

interface, the stack will contain only doubles, and since LinkedList stores only objects, any
double stored is automatically converted into a wrapper class Double.

Use the following Tester class to test StackLL (the rems show what should be printed):

public class Tester
{
 public static void main(String args[])
 {
 StackLL stck = new StackLL();
 System.out.println(stck.size()); //0
 stck.push(157.3);
 stck.push(22);
 stck.push(-18);
 double j = stck.pop();
 System.out.println(j); // -18.0
 System.out.println(stck.peek()); //22.0
 System.out.println(stck.pop()); //22.0
 System.out.println(stck.size()); //1
 stck.clear();
 System.out.println(stck.size()); //0
 }
}

The output will appear as follows:

0
-18.0
22.0
22.0
1
0

Practical Applications:

Now that we have produced a Stack class, let’s look at some practical applications. We will
describe only two; however, there are many others.

1. A stack is used in computer languages to keep track of method calls. Suppose we are
at point A in a program at which we call method1 that in turn calls method2.
Ultimately, we will return back up this “calling chain” to the original position, point
A. The way this is all accomplished in software is that when the first call to method1
is initiated, the return address (the address of point A) is pushed on the Call Stack
along with all the variables in scope at that time. When the point is reached in
method1 (point B) at which there is a call to method2, all the variables of method1
and the return address of point B are pushed on the Call Stack. method2 executes, and
when finished, all the variables and the return address for method2 are popped off the
stack, and method1 continues until it is finished. Then the remaining information on
the stack (the return address of point A and the associated variables) are popped and
code execution follows from point A.

50-4

Very succinctly, we may conclude that a Call Stack supports operations in a
“chain” of method calls.

2. Many software applications have undo operations. Suppose we are using a graphics
editor in which we are editing a picture to which we have made several modifications.
When we access undo (typically with Ctrl Z) we expect the last modification we
made to be “undone”. If we undo again we expect the next-to-the-last thing we did to
be undone, etc. This is a description of a LIFO in which multiple undo’s are
implemented with a stack. Because of the complexity of software development of
such a stack, some software applications limit the user to only a single undo.

3. A stack is used in web browsers to keep a list of sites visited. When you click on the

Back button in a browser it pops the URL Stack, and you return to the site
immediately preceding the current site.

A stack based calculator:

For our next project we are going to implement a stack-based calculator. What exactly is
a stack-based calculator? Hewlett-Packard produced these type calculators at one time
and are the preferred type for calculator contests, or wherever speed is important. They
use Reverse Polish Notation (RPN).

A stack-based calculator will seem very awkward if you have never used one before, but
they actually make the entry of complex expression much easier than with traditional
calculators. Let’s consider the following arithmetic expression whose answer is 2:

 (10 + 2) / (9 – 3)

With a traditional calculator we would enter the following sequence in infix form (with
the operator between the two operands):

 (, 10, +, 2,), /, (, 9, - 3,), =

Notice that we are forced to enter two pairs of parenthesis in order to group the numerator
and denominator. If we don’t use the parenthesis it is even more awkward. With an RPN
calculator we would, instead, enter the following sequence in postfix form (with the
operator following the two operands):

 10, 2, +, 9, 3, -, /

When finished, the top of the stack would contain 2, the answer. This all seems very
strange, but it does produce the answer. Here are the rules behind this peculiar sequence:

• If a number is entered it is pushed on the stack.

• If a math operation symbol is entered, the stack is popped twice and those

numbers are used as the operands for that math operation. The math
operation is performed and the answer is pushed back on the stack.

• At the end of all operations the answer is at the top of the stack.

50-5
How it works:

Let’s analyze step by step what happens as we enter this sequence 10, 2, +, 9, 3, -, / :

 Entry Resulting Stack Comment

10 10 Push 10 on the stack.

2 2 Push 2 on the stack.
10

 + 12 2 and 10 are popped, 10+2 is calculated, and the
 answer (12) is pushed back on the stack.

 9 9 Push 9 on the stack.
 12

3 3 Push 3 on the stack.
9
12

- 6 3 and 9 are popped, 9-3 is calculated, and the

12 answer (6) is pushed back on the stack.

/ 2 6 and 12 are popped, 12 / 6 is calculated, and the
 answer (2) is pushed back on the stack.

There, remaining at the top of the stack, and, in fact, the only item on the stack, is the
answer (2).

Project… Stack Calculator
Create a Tester class that allows keyboard entry of double precision numbers and the math
operators +, -, /, and *. Use the StackLL class developed in the last project. Test your finished
code with the sequence keyboard 10, 2, +, 9, 3, -, / which, of course, represents the problem
 (10 + 2) / (9 – 3)

After entering the sequence, pop the stack (by entering Q to quit) and print the answer. It should
be 2. The output screen should appear as follows:

Enter number, math operation(+,-,*, or /), or Q to quit: 10
Enter number, math operation(+,-,*, or /), or Q to quit: 2
Enter number, math operation(+,-,*, or /), or Q to quit: +
Enter number, math operation(+,-,*, or /), or Q to quit: 9
Enter number, math operation(+,-,*, or /), or Q to quit: 3
Enter number, math operation(+,-,*, or /), or Q to quit: -
Enter number, math operation(+,-,*, or /), or Q to quit: /
Enter number, math operation(+,-,*, or /), or Q to quit: Q
The answer is 2.0

Try some other problems on your “stack calculator”. For example, try 3, 2, 5, +, * which is the
problem 3(2 + 5).

50-6

Miscellaneous Stack facts:

At this point it should be mentioned that Java does have a Stack class requiring an import
of import java.util.Stack;. Of course, in this lesson we wrote our own stack class as an
excuse to use the LinkedList class; however, Java’s own Stack class also uses all the
methods that were introduced in this lesson (push, pop, peek, size, and clear), and stores
Object type objects.

In addition to the methods presented here there is also a toString method that returns a
String similar to “[A, B, C]” where C is the top of the stack.

50-7

LinkedList and Stacks…. Contest Type Problems

1. Consider a waitress handing off orders to a short-order cook, and the processing of those orders. This is
an example of which of the following?

 A. LIFO B. FIFO C. Stack D. Queue E. More than one of these
2. What code should replace <#1> in the code to the
right?

A. lkdList = new LinkedList();
B. LinkedList lkdList = new LinkedList();
C. lkdList.clear();
D. lkdLst = new LinkedList;
E. None of these
3. Assuming that <#1> above has been filled in
correctly in the code to the right, what code would
replace <#2> in order to implement a push operation on
the stack?

A. lkdList.push(x);
B. lkdList.addFirst(x);
C. lkdList.addFirst(“x”);
D. lkdList.addLast(new Integer(x));
E. None of these
4. Assuming that <#1> and <#2> above have been
filled in correctly in the code to the right, what code
would replace <#3> in order to implement a pop
operation on the stack?

A. return lkdList.getLast();
B. return lkdList.removeFirst();
C. lkdList.getLast();
D. lkdList.removeFirst();
E. return (Integer)lkdList.removeFirst();
5. Assuming <#1> and <#3> have been filled in
correctly in the code to the right, which of the
following would be a correct usage of the pop method?
(Assume this code is in the main method of some other
class and that the BigStack object, bs, already exists.)

A. bs.pop();
B. System.out.println(bs.pop());
C. int pk = bs.pop();
D. All of the above
E. None of these

//BigStack is a stack class using a LinkedList
//object as the underlying data structure. It
//maintains a stack of Integer objects. The head
//of the list is considered the top of the stack.
public class BigStack {
 public BigStack {
 <#1>
 }

 public void push(int x) {
 <#2>
 }

 public int pop() {
 <#3>
 }

 private LinkedList lkdList;
}

6. What code should replace <#1> in the code to the
right in order to correctly implement the peek method?

A. return (Integer)myList.getFirst();
B. return myList.getFirst();
C. (Integer)myList.getLast();
D. return (Integer)myList.getLast();
E. None of these

/*peek method returns the top item (int
equivalent) of a stack without removing it. The
underlying data structure is a LinkedList
object, myList. The end of the list is considered
the top of the stack.*/
public int peek()
{
 <#1>
}

50-8

7. Suppose we wish to store several items of data in a particular sequence and then retrieve them in
reverse sequence. Which of the following would be best suited to this job?

A. Queue B. Stack C. Stack and queue would work equally well D. Tree E. None of these

8. Which of the following statements is true?

A. Linked lists always have better runtime performance than arrays.
B. When working with an array that is dimensioned too small, and the amount of data is unpredictable,
 there is a danger of running out of space.
C. If we are unable to predict a list’s maximum size, then a linked list may be the most efficient usage of
 memory.
D. Both A and B
E. Both B and C

9. Which of the following package names will import the LinkedList class?

A. java.io B. java.util C. java.lang D. java.awt E. None of these

10. Which of the following will store in String pugh the result of popping a stack object called theStack
which stores Strings as Object type objects? (Assume that generics were not used in the creation of
theStack.)

A. pugh = theStack.pop(); B. pugh = ((String)theStack).pop(); C. pugh = (String)theStack.pop();
D. pugh = new theStack.pop(); E. pugh = theStack.pop(new String s);

11. Suppose that Strings “One”, “Two”, and “Three” are successively pushed onto Stack st1. All are
popped off, and as each String is popped, it is immediately pushed onto Stack st2. What is returned by the
toString method of st2 ?

A. “[Three, Two, One]” B. “[One, Two, Three]” C. “(Three, Two, One)”
D. “(One, Two, Three)” E. None of these

12. What is printed by the code to the right?

A. Black Beard the pirate
B. pirate the Beard Black
C. thepirate the Beard Black
D. BeardPirate the Beard Black
E. None of these

Stack st = new Stack();
st.push(“Black”);
st.push(“Beard”);
String str1 = (String)st.peek();
st.push(“the”);
st.push(str1);
String str2 = (String)st.pop();
st.push(“Pirate”);
System.out.println(str2);
while(!st.isEmpty)
{
 System.out.print((String)st.pop() + “ ”);
}

51-1

Lesson 51….. Binary Search

Consider the following array of ordered integers. It is very important that they be in order so
that the techniques we are to discuss will work.

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-1 An ordered array of integers.

Our task is to examine this array and see if 22 is present, and if it is, report its index. If it is not
present, report an “index” of –1. Of course, we can instantly tell at a glance that 22 is, indeed,
present, and that its index is 3. That’s easy for us as humans, but is it this straightforward for a
computer program? (Actually, it’s not easy for humans either if the size of the array is several
thousand or, perish the thought, in the millions.)

The binary search technique looks at a range of index numbers that is determined by a lower
bound (lb) and an upper bound (ub), subdivides that range in halves, and then continues the
search in the appropriate half. We illustrate this by initially setting lb = 0 and ub =13 and
realizing that the number we seek lies somewhere on or between them (the shaded region).

 lb ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-2 lb and ub are initially set.

Find the midpoint m using integer arithmetic, 6 = (lb + ub)/2. This position is illustrated below.

 lb m ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-3 Midpoint m is determined.

Next, we ask if the number we seek (22) is at position m. In this case it is not, so we next ask if
22 is less than or greater than the value at position m. 22 is, of course, less that 51 so we indicate
the new search area by the shaded area below and redefine ub = 5.

 lb ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-4 A new ub and search region are defined.

Again, we calculate m = (lb + ub) / 2 using integer arithmetic and get 2. This new m value is
shown in Fig. 51-5.

 lb m ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-5 A new m value of 2 has been determined as the midpoint.

51-2
Repeat what we have done before by determining if the number we seek (22) is equal to the
value at position m (21). It is not, so as before, we ask if 22 is less than or greater than 21. Of
course, it’s greater than 21, so we now redefine lb = 3 and have the new search area shown in
Fig 51-6.

 lb ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-6 A new, smaller search area defined by lb and ub.

Are you beginning to see a pattern here? We are cutting our search area in half each time. At this
rate we could examine an array of over a million integers with only 20 iterations of this process.

Let’s average lb and ub as before, and this time m is 4. The result is shown in Fig 51-7 below.

 lb m ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-7 Ready to test if the value stored at index 4 is what we seek.

Ask if the 22 (the value we seek) is stored at index m = 4. It is not, so now ask if 22 is less than
or greater than 43. It’s less than 43 so we redefine ub as 3. Notice now that lb and ub are the
same and we have just about “squeezed” the search area down to nothing. The redefined
boundaries and the resulting recalculation of m are shown below. If we don’t find the number we
seek in this single cell that’s left, the number is not in the array, and we would have to report a
“failure” value of –1 as a result of our search.

 lb = m = ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -7 15 21 22 43 49 51 67 78 81 84 89 95 97

Fig 51-8 The lower bound, upper bound and the midpoint all coincide.

Now, when we ask if 22 (the number we seek) is at index 3, the answer is, “yes”, so we exit this
process and report index 3 as the answer.

Ending the process:

We will code this entire process shortly, however, there is something worth noticing here.
As we squeezed down to ever-smaller ranges, the indices lb and ub move closer to each
other. If the number we seek is not in the array, we will find that the algorithm actually
moves these two value “right past each other”. Therefore we can use the condition ub <
lb as a condition to exit the loop, or… ub >= lb to stay in the loop.

Implementing our own binary search:

Our first illustration of code implementing the binary search will be to search the integer
array {-7, 15, 21, 22, 43, 49, 51, 67, 78, 81, 84, 89, 95, 97}. Notice that this is the array
used in the example above. We will continue the tradition of using the variables lb and
ub; however, instead of m we will use mid. The student should be aware that when
looking at binary searches written by other programmers, other variables are often used in
the place of our lb and ub. Popular choices are left & right, front & back, or start & end.

51-3

The following class provides a main method for testing and a binarySearch method
where the search is actually done.

public class Tester
{
 public static void main(String args[])
 {

 int i[] ={-7, 15, 21, 22, 43, 49, 51, 67, 78, 81, 84, 89, 95, 97};
 System.out.println(binarySearch(i, 22)); //prints 3
 System.out.println(binarySearch(i, 89)); //prints 11
 System.out.println(binarySearch(i, -100)); //prints -1
 System.out.println(binarySearch(i, 72)); //prints -1
 System.out.println(binarySearch(i, 102)); //prints -1

 }

 //Look for srchVal in the a[] array and return the index of where it’s found
 //Return –1 if not found

 private static int binarySearch(int a[], int srchVal)
 {

 int lb = 0;
 int ub = a.length - 1;

 while(lb <= ub)
 {

 int mid = (lb + ub)/2;
 if(a[mid] = = srchVal)
 {
 return mid;
 }
 else if (srchVal > a[mid])
 {
 lb = mid + 1; //set a new lowerbound
 }
 else
 {
 ub = mid -1; //set a new upper bound
 }

 }
 return -1; //srchVal not found

 }
}

Project…Binary Search, Reverse Order

Modify the above class so that the exact same i[] array in the main method is ordered in
descending order. Then modify the binarySearch method so it will search this new array
properly.

51-4

Project… Binary Search with Objects

Modify the binary search listed on the previous page so as to accommodate objects. First, we
must adjust the main method so that the int array is converted into an Integer array. The int
values of 22, 89, -100, 72, and 102 for which we formerly searched, must now also be Integer
objects. These modifications are detailed below:

public class Tester
{

 public static void main(String args[])
 {

 int i[] = {-7, 15, 21, 22, 43, 49, 51, 67, 78, 81, 84, 89, 95, 97};
 Integer iw[] = new Integer[14];
 for(int k = 0; k < 14; k++)
 {
 iw[k] = i[k]; //pre Java 5.0 iw[k] = new Integer(i[k]);
 }

 System.out.println(binarySearch(iw, 22)); //3
 //pre Java 5.0, System.out.println(binarySearch(iw, new Integer(22)));
 System.out.println(binarySearch(iw, 89)); //11
 System.out.println(binarySearch(iw, -100)); //-1
 System.out.println(binarySearch(iw, 72); //-1
 System.out.println(binarySearch(iw, 102)); //-1

 }

 private static int binarySearch(Object a[], Object srchVal)
 {
 … students supply this code …
 }

}

Notice that the binarySearch method now receives Object type objects so as to be as general as
possible. Wrapper class Integer objects implement the Comparable interface (and therefore have
a compareTo method); however, if you use this method to do a binary search on an ordered array
of other objects, you must insure that those objects implement the Comparable interface.

Supply the code for the binarySearch method remembering that the parameters it receives are
Object type objects, and if either is used to call the compareTo method, it must first be cast as a
Comparable or original object type.

**

Recursive Binary Search:

We offer one last way to do a binary search. The class at the top of the next page uses
recursion to implement a binary search. Notice that the binarySearch method uses four
parameters.

51-5
public class Tester
{

 public static void main(String args[])
 {

 int i[] ={-7, 15, 21, 22, 43, 49, 51, 67, 78, 81, 84, 89, 95, 97};
 int lb = 0;
 int ub = i.length -1;
 System.out.println(binarySearch(i, 22, lb, ub)); //prints 3
 System.out.println(binarySearch(i, 89, lb, ub)); //prints 11
 System.out.println(binarySearch(i, -100, lb, ub)); //prints -1
 System.out.println(binarySearch(i, 72, lb, ub)); //prints -1
 System.out.println(binarySearch(i, 102, lb, ub)); //prints -1

 }

 private static int binarySearch(int a[], int srchVal, int lb, int ub) //recursive
 {

 if(lb > ub)
 {
 return -1;
 }
 else
 {

 int mid = (lb + ub)/2;
 if(a[mid] = = srchVal)
 {
 return mid;
 }
 else if (srchVal > a[mid])
 {
 return binarySearch(a, srchVal, mid + 1, ub);
 }
 else
 {
 return binarySearch(a, srchVal, lb, mid -1);
 }

 }
 }

}

**

Pros and cons:

Quite often we have to ask ourselves if a binary search is really worthwhile, especially
when compared to doing a linear search. (A linear search is typically done on an
unordered array.)

A linear search is done by starting at index 0 of an array and just marching all the
way to the end asking at each index, “Is this the value?” With good luck we will
get a match on the first index we try, but on the other hand, with bad luck, it will
be the very last possible index. Therefore, the Big O value for a linear search is
O(n) and it is not very efficient.

51-6

Since a binary search is much, much faster on the average than a linear search, we have
to ask ourselves if sorting the array (as required before doing a binary search) is
worthwhile. If the array is to be searched only once, then a linear search would probably
save time in the long run. However, if several searches are to be done, then the time
investment in sorting the array would probably pay off, and the binary search would be
preferred.

It’s all in the Arrays class:

We would be remiss if it was not mentioned that the Arrays class in the java.util package
has sort and binarySearch methods. These have already been discussed in Lesson 19;
however, here is a summary of that information:

a. Sort the array in ascending order.
public static void sort(int a[]) //Signature

Example:
 int b[] = {14, 2, 109, . . . 23, 5, 199};

 Arrays.sort(b); //the b array is now in ascending order

b. Perform a binary search of an array for a particular value (this assumes the array
has already been sorted in ascending order). This method returns the index of the
last array element containing the value of key. If key is not found, a negative
number is returned… –k –1 where k is the index before which the key would be
inserted.
public int binarySearch(int a[], int key) //Signature

Example:

//Assume array b[] already exists and has been sorted in ascending order.
//Suppose the b array now reads {2,17, 36, 203, 289, 567, 1000}.
int indx = Arrays.binarySearch(b, 203); //search for 203 in the array
System.out.println(indx); //3

Unfortunately, Arrays.binarySearch does not work on any objects other than String
and Comparable object arrays. It does work on all the primitive data type arrays.

Some miscellaneous facts:

Finally, here are a few random facts about binary searches (on an array of n elements).

1. Array must already be sorted.

2. Big O value is O(log n) for both iterative and recursive types.

3. log2 n is the worst case number of times we must “halve” the list.

4. The largest size array that can be searched while comparing at most n elements is

2n-1.

51-7

Exercise on Lesson 51

1. If we have an array of 32 numbers, what is the maximum number of times we will need
to halve the array in a binary search for a particular number?

2. If we are doing a binary search for the value 104 in the array below, what will be the next
values for m, lb, and ub assuming their current values are lb=0, m=6, & ub=13 as
shown?

 lb m ub
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Value -54 11 14 59 61 65 72 88 89 92 104 105 106 111

lb = ?

 ub = ?
 m = ?

3. What must be required of an array of numbers before a binary search can be done?

4. In the following binary search of an array already sorted in ascending order, fill in the

code for <#1> and <#2> so that the search is done properly.

 private static int binarySearch(int a[], int srchVal)
 {

 int left = 0;
 int right = a.length - 1;

 while(right >= left)
 {

 int middle = (left + right)/2;
 if(a[middle] = = srchVal)
 {
 return middle;
 }
 else if (srchVal < a[middle])
 {
 <#1>
 }
 else
 {
 <#2>
 }

 }
 return -1;

 }

51-8

5. Suppose you have the following array of doubles called dd[].

{82.92, 56.1, 77.02, … 150.23 , .0231}

Show how you would convert this array into a corresponding array of wrapper class
Doubles called dw[].

6. Suppose obj1 and obj2 are objects of type Object that implement the Comparable

interface. What is wrong with the following code and how would you fix it?
int c = obj2.compareTo(obj1);

7. What is the Big O value for a binary search?

8. What is the Big O value for a linear search?

9. Is it possible for a linear search to be faster than a binary search if they search the same

array?

10. What is the smallest number of comparisons a linear search might have to make when

searching an array of length n?

11. What is the largest number of comparisons a linear search might have to make when

searching an array of length n?

12. Which is generally more efficient, a linear or a binary search if the array is already

ordered?

13. If you only have to search a large unsorted array one time, which would be the most
efficient, a linear or binary search? Why?

14. Assume you have an unsorted double array called dd[]. Use the Arrays class to show
how to do a binary search for 107.3. Print “Hubba hubba” if it’s found.

15. Suppose Arrays.binarySearch(a, 18) returns a value of –17. Between what two indices in
array a does 18 fall?

16. Will the Arrays.binarySearch method work on an array of String objects?

51-9

Binary Search… Contest Type Problems

1. Call the binSrch method shown to the right with
binSrch(str, 0, str.length - 1, “epsilon”). How many
times is the compareTo method called if the str
array is as follows?

“alpha” “beta” “delta” “omega” “phi”

A. 0
B. 1
C. 2
D. 3
E. 4

2. What figure of merit does a time complexity
analysis of the code to the right yield?

A. O(n)
B. O(n2)
C. O(log n)
D. O(2n)
E. None of these

public static boolean binSrch(Comparable p[], int
 start, int end, Comparable thing)
{
 if(start > end)
 return false;
 int m = (start + end)/2;
 if (p[m].equals(thing))
 return true;
 else if(p[m].compareTo(thing)<0)
 return binSrch(p, m + 1, end, thing)
 else
 return binSrch(p, start, m-1, thing)
}

3. What must be required of an array upon which a binary sort is to be done?

A. Must be sorted in ascending order B. Must be sorted in descending order C. Either A or B

D. Can only be of a primitive type, no objects allowed E. None of these

4. What replaces <#1> in the code to the right so
that a binary search is correctly done?

A. left/2 + right/2
B. (left + right)/2
C. .5 * (right + left)
D. Both A and B
E. None of these

5. What replaces <#2> in the code to the right so
that a binary search is correctly done?

A. cmp = = 0
B. cmp < 0
C. cmp > 0
D. cmp <=0
E. None of the these

public static boolean binarySearch(Comparable
 x[], Object srchVal)
{
 int left = 0, right = x.length-1;
 do
 {
 int m= <#1>;
 int cmp = x[m].compareTo(srchVal);
 if(<#2>)
 {
 return true;
 }
 else if(cmp > 0)
 {
 right = m – 1;
 }
 else
 {
 left = m + 1;
 }

 }while(right>=left);
 return false;
}

51-10

6. Which of the following would replace <#1>
in the code to the right so that a binary search
is correctly done?

A. init >= fini
B. init > fini
C. init < fini
D. init <= fini
E. None of these

//binary search
public static boolean seek(Comparable p[], int
 init, int fini, Comparable lookFor)
{
 if(<#1>)
 return false;
 int m = (init + fini)/2;
 if (p[m].equals(lookFor))
 return true;
 else if(p[m].compareTo(lookFor)<0)
 return seek(p, m + 1, fini, lookFor)
 else
 return seek(p, init, m-1, lookFor)
}

7. Which of the following is a legitimate way to search an unsorted integer array called bj for the
value stored in int i, and print true if it’s found and false if not found.

A. System.out.println(Arrays.binarySearch(bj, i));

B. Arrays.sort(bj);

 System.out.println(Arrays.binarySearch(bj, i) >= 0);

C. System.out.println(Arrays.binarySearch(i, bj));

D. Arrays.sort(bj);

 System.out.println(Arrays.binarySearch(bj, i));

E. None of these

52-1

Lesson 52….. Binary Search Tree

We will begin by showing how a binary search tree is constructed. We will construct our tree
from the following sequence of integers; 50, 56, 52, 25, 74, and 54. Each number will result in a
“node” being constructed. The nodes in the series of figures below are depicted with circles, and
the sequence of figures shows the sequence in which the nodes are added.

The rules:

As can be observed from the drawings, a new integer (n) is added by starting at the root node
(top level node) as the first “comparison node” and then using the following rules:

1. If the number we are to insert (n) is greater than the “comparison node”, move down
the tree and to the right; the first node encountered is the new “comparison node”.

2. If the number we are to insert (n) is less than or equal to the “comparison node”,
move down the tree and to the left; the first node encountered is the new “comparison
node”.

3. If, after comparing at a node position, a node does not exist in the direction in which
we try to move, then insert a new node containing the integer n at that position.

Fig 52-1 T

 Fig 52-

25

Creation

We w
fashi
them
are d

ree started with root node

 Fig 52-2 56 is added

 Fig

4 25 is added

 Fig 52-5 74 is added

50 50

56

25

74

25

52

50

56

52

50

56

Fig 5

 of the BSTNode class:
ill now create a class call BST (binary search tree) that will allow

on described above. However, we must first have a class that create
selves. What information must a node contain? For storing integers
oing in this example, each node should contain the following:

52-3 52 is added

52

50

56
52

50

2-6 54

us to a
s the
 in the

56
54

 is adde

dd nod
nodes
 nodes
74
d

es in the

, as we

52-2
1. The actual data (an integer for the example above)
2. A reference to the right-hand node immediately beneath this node (null if it doesn’t

exist)
3. A reference to the left-hand node immediately beneath this node (null if it doesn’t

exist)

We are going to call this node-creating class, BstNode. Its implementation is shown
below.

public class BstNode
{

 public BstNode(int i) //Constructor
 {

 leftNode = null;
 rightNode = null;
 intData = i;

 }

 public int intData;
 public BstNode leftNode;
 public BstNode rightNode;

}

Notice that the three state variables in this class correspond to the three numbered
requirements mentioned earlier. Also, notice that the leftNode and rightNode fields are set
to null since when a node is constructed, there are no other nodes “hanging off it” yet.

The BST class:

Next, we turn our attention to the BST class itself. In the constructor, we simply create the
root node (the highest level node).

The reader is strongly urged to look over Appendix W (Tree Definitions). There,
you will get a firm grounding in the tree-terms we have already used here and
new ones we will be using soon.

 The constructor and state variables are as follows for the BST class:

public class BST
{

 public BST(int i) //constructor
 { // Root node is instantiated at the time of creation of the tree object.
 rootNode = new BstNode(i); //create a node with the above class
 }
 …more code to come…

 BstNode rootNode;

}

The addNode method:
Now comes the most important (and most complex) method of the BST class, the
addNode method in which decisions are made as to the correct position for each new
node to be added. Here are the rules for inserting a new node after first setting the root

52-3
node as the currentNode.

1. If the number we are to insert (n) is greater than the currentNode, move down the
tree and to the right; the first node encountered is the new currentNode.

2. If the number we are to insert (n) is less than or equal to the currentNode, move
down the tree and to the left; the first node encountered is the new currentNode.

3. Continuing in this same fashion, move down the tree. If, after comparing at a
node position, a node does not exist in the direction in which we try to move, then
insert a new node containing the integer n at that position.

If these rules seem familiar, they are essentially the same as those at the top of page 52-1.
Here, in this latest rendition, we become more specific with regard to the variable names
to be used in the method that implements the rules. The complete class (including the
addNode method) now reads:

public class BST
{
 public BST(int i) //constructor: Root node added at the time of creation of the tree
 {
 rootNode = new BstNode(i);
 }

 public void addNode(int i)
 {
 BstNode currentNode = rootNode;
 boolean finished = false;
 do
 {
 BstNode curLeftNode = currentNode.leftNode;
 BstNode curRightNode = currentNode.rightNode;
 int curIntData = currentNode.intData;

 if(i > curIntData) //look down the right branch
 {

 if(curRightNode == null)
 { //create a new node referenced with currentNode.rightNode
 currentNode.rightNode = new BstNode(i);
 finished = true;
 }
 else //keep looking by assigning a new current node one level down
 { currentNode = currentNode.rightNode; }

 }
 else //look down the left branch
 {

 if(curLeftNode == null)
 { //create a new node referenced with currentNode.leftNode

 currentNode.leftNode = new BstNode(i);
 finished = true;

 }
 else
 { //keep looking by assigning a new current node one level down

52-4
 currentNode = currentNode.leftNode;
 }

 }
 }while(!finished);
 }
 BstNode rootNode;
}

It is left to the reader to examine the code in the addNode method and to convince
himself that the three numbered rules are being implemented.

A class for testing:
To test the BST class, use the following Tester class:

public class Tester
{

 public static void main(String args[])
 {
 //the first integer in the tree is used to create the object

 BST bstObj = new BST(50);
 bstObj.addNode(56);
 bstObj.addNode(52);
 bstObj.addNode(25);
 bstObj.addNode(74);
 bstObj.addNode(54);

 }
}

Prove that it really works:

The integers mentioned in the example at the beginning of this lesson are added to the
tree with this test code. But how do we really know that it is working? What we need is
some type of printout. If we add the following traverseAndPrint method to the BST class
we will see that our class does, indeed, perform as advertised.

 public void traverseAndPrint(BstNode currentNode)
 {

 System.out.print("data = " + currentNode.intData);
 //To aid in your understanding, you may want to just ignore this

 //indented portion and just print the integer. In that case, change the
 //line above to a println instead of a print.
 if(currentNode.leftNode == null)
 { System.out.print(" left = null"); }
 else
 { System.out.print(" left = " + (currentNode.leftNode).intData); }

 if(currentNode.rightNode == null)
 { System.out.print(" right = null"); }
 else
 { System.out.print(" right = " + (currentNode.rightNode).intData);}
 System.out.println("");

 if(currentNode.leftNode != null)
 traverseAndPrint(currentNode.leftNode);

52-5

 if(currentNode.rightNode != null)
 traverseAndPrint(currentNode.rightNode);

 }

This method has recursive calls to itself and will print every node in the tree. In addition
to the data stored in each node (an integer), it also prints the contents of the two nodes
“hanging off” this node.

Test this new method by adding the following code at the bottom of the main method in
the Tester class.

 //print all the nodes
 bstObj.traverseAndPrint(bstObj.rootNode);

For the data suggested in the examples on page 52-1 the output will appear as shown
below when the main method in the Tester class is executed:

data = 50 left = 25 right = 56
data = 25 left = null right = null
data = 56 left = 52 right = 74
data = 52 left = null right = 54
data = 54 left = null right = null
data = 74 left = null right = null

**

Project… BST find Method

Now we come to what a binary search tree is all about, the search. You are to create a method of
the BST class called find. Its signature is as follows:

 public boolean find(int i)

It returns a true if i is found in the binary tree and false if it’s not found. This method will use
essentially the same rules as those for the addNode method except when we come to the place
where we formerly added a node; we will exit the method and say that the search was
unsuccessful. Likewise, there is more to the comparisons. We can no longer just test to see if the
data we are searching for is greater than or less than that of the currentNode. We must now also
test for equality.

To test the find method, add the following code to the bottom of the main method in Tester.

 System.out.println(bstObj.find(74)); //This is one it will find…prints a true
 System.out.println(bstObj.find(13)); //This is one it won't find…prints a false

Why use a Binary Search Tree?

What can searching a Binary Search Tree (BST) do that we could not accomplish
searching a linear array? The BST can do it faster, much faster. The Big O value for a

52-6
reasonably balanced BST is O(log n). For an unordered array it’s O(n); however, for an
ordered array, a binary search is also of the order O(log n). So, what are the advantages of
a binary search tree over searching an ordered array (using a binary search) since their
Big O values are the same? The advantages are:

1. Using a binary search on an array, ordering is necessary after the insertion of
each new element. An alternative to this is inserting the new element in the
correct position. In either case, the time required to do this is typically
considerably more than the time required to insert a new node in a BST.

2. In an array, we must pre-dimension the array.

a. If we dimension too small, we run the risk of running out of space if more
nodes need to be added than were originally anticipated.

b. If we dimension to large, we waste memory and may degrade the
performance of the computer.

With the BST object, we dynamically create nodes as we need them in dynamic
memory. There is no need to know ahead of time how many there will eventually
be.

Anonymous objects:

Have you noticed that with the BST class, the node objects that contain our data are
not named (except for the root node)? We have to traverse the tree and each node we
encounter gives references to the two nodes “hanging off” it with leftNode and rightNode.
Recall that we had a similar situation in Lesson 49 with the singly linked list in which we
had a “chain” of nodes, each with a reference to the next. Here, each node has references
to two nodes that follow it.

Balanced Tree:

Above it was mentioned that the Big O value for searching a Binary Search Tree was
O(log n) if the tree was reasonably balanced. What do we mean by a balanced tree? Refer
b to Fig 52-6 and it can be seen that this tree is not balanced. There are more nodes to
th

If
ra
is
o

ack

e right of the root (50) than to the left. An extreme case of this is shown below.

Fig 52-

50

 we ar
ndom
 that t
f the s
7 A to

Consider the following sequence of numbers to be
added to a binary tree.

56

e ver
 data,
hat tre
earch

tally unb

 {50, 56, 74, 99}

74

y unluc
 it is no
e be s

. What

alanced “tree”

The resulting “tree” to the left is totally unbalanced.
Every new node to be added lies to the right of the
previous node. In this case (which is clearly the worst
case) the Big O value for searching the tree is O(n). If
there are n items we might very well have to do n
comparisons before finding the desired one.

99

ky, just such a tree might result when we add our nodes. With
t very likely to be as bad as Fig 52-7; however, what is more likely,

omewhat out of balance which would, of course, reduce the efficiency
 can we do to prevent this unbalance? It is beyond the scope of this

52-7
book, however, there are algorithms that can detect this and “rebalance the tree”. Nothing
comes free, and this rebalancing adds complexity to the code as well as additional
processing time.

Generalizing, Using Objects for Data:
It is possible to modify our class so that instead of just storing primitive integers we could
store objects. To do this we would replace the code everywhere we pass an int variable as
an argument, with Comparable obj .

The only catch is that the obj object that we pass in, must implement the compareTo
method. The other requirement is that the former state variable, int intData be replaced
with Comparable data. Rather than modify the BST class that we have already done, we
are going to present another class that adds Comparable type objects to nodes in a Binary
Search Tree. This class is just about the ultimate as far as brevity of code is concerned;
however it is more difficult to understand because it uses recursion.

public class BsTree
{
 public BsTree(Comparable d)
 {

 theData = d;
 leftNode = null; //This and next line could be omitted,
 rightNode = null; //they are automatically null.

 }

 public BsTree addNode(Comparable d)
 {

 if(d.compareTo(theData) > 0)
 { //d should be inserted somewhere in the branch to the right
 if(rightNode != null)
 //right node exists, go down that branch, look for place to put it
 rightNode.addNode(d);
 else
 rightNode = new BsTree(d); //Create new rightNode, store d in it
 }
 else
 { //d should be inserted somewhere in the branch to the left
 if(leftNode != null)
 //left node exists, go down that branch, look for place to put it
 leftNode.addNode(d);
 else
 leftNode = new BsTree(d); //Create a new leftNode, store d in it
 }
 return this;

 }
 private Comparable theData;
 private BsTree leftNode, rightNode;
}

It is left to the reader to create a find method comparable to those of the BST class earlier
in this lesson. We also need a traverseAndPrint method for this class. Three different
versions of traverseAndPrint will be offered below as the various types of traversals are
discussed.

52-8

Traversal types:
There are four traversal types. They are preorder, inorder, postorder, and level order traversals.
Each visits all of the nodes in the tree, but each in a different order.

Preorder traversal of a Binary Search Tree:
Order of visitation of nodes: 50, 25, 18, 7, 19, 35, 30, 37, 76,
61, 56, 68, 80, 78, 85

Fig. 52-8
Preorder traversal
follows the sequence

50

18

7 19

25

35

30

The following code implem
way to remember this code i
recursive calls.

 public void traverseA
 {
 System.out.p
 if(leftNode !
 if(rightNode
 }

Inorder traversal of a B
Order of visitation of nod
61, 68, 76, 78, 80, 85

7

25

35

3019

18

The following code implem
technique is important since
this code is to note the print
calls.

public void traverseA
 {
of arrows. Rule: A
node is visited before
its descendants.

76

37

61

56 68

80

78 85

ents a preorder traversal of a tree as depicted in Fig. 52-8. An easy
s to note the printing for this preorder traversal comes before the two

ndPrint() //Use with BsTree class on previous page.

rintln(theData);
= null) leftNode.traverseAndPrint();
 != null) rightNode.traverseAndPrint();

inary Search Tree:
es: 7, 18, 19, 25, 30, 35, 37, 50, 56,

Fig. 52-9
Inorder traversal
follows the sequence
of arrows. The order is
the ascending order of

50

e

i

37

nts
 it v
ng

nd
a sorted list. Rule: A
node is visited after
its left subtree and
before its right
subtree.

76

80

78 8556 68

61

f

P

an inorder
isits the no
or this inor

rint()

traversa
des in a
der trav
l

e

 of a
“sor
rsal

c

tree as depicted in Fig. 52-9. This
ted order.” An easy way to remember
omes in-between the two recursive

52-9
 if(leftNode != null) leftNode.traverseAndPrint();
 System.out.println(theData);
 if(rightNode != null) rightNode.traverseAndPrint();
 }

//Exchanging the first and last lines of this method results in a reverse-order traversal.

Postorder traversal of a Binary Search Tree:
Order of visitation of nodes: 7, 19, 18, 30, 37, 35, 25, 56, 68,
61, 78, 85, 80, 76, 50

Fig. 52-10
Postorder traversal
follows the sequence
of arrows. Rule: A
node is visited after
its descendants.

7 8578

8061

68

7625

3518

19 30 37 56

50

The following code implements a postorder traversal of a tree as depicted in Fig. 52-10. An easy
way to remember this code is to note the printing for this postorder traversal comes after the two
recursive calls.

 public void traverseAndPrint()
 {
 if(leftNode != null) leftNode.traverseAndPrint();
 if(rightNode != null) rightNode.traverseAndPrint();
 System.out.println(theData);
 }

Level order traversal of a Binary Search Tree:
Order of visitation of nodes: 50, 25, 76, 18, 35, 61, 80, 7, 19,
30, 37, 56, 68, 78, 85

Fig. 52-11
Level order traversal
follows the sequence
of arrows.

7 85

25 76

3518

19 30 37

61

56 68

80

78

50

The code that would implement this is a bit more involved than the others. One way to do it is to
have counters that keep up with how deep we are in the tree.

52-10
An Application of Binary Trees… Binary Expression Trees

Fig. 52-12 (6 + 8) * 2

Consider the infix expressions (6 + 8) * 2 and 5 + (3 * 4).
The expression trees to the right are a result of parsing these
expressions. As can be inferred from the drawings, the
following rules apply for an expression tree:

• Each leaf node contains a single operand.
• Each interior node contains an operator.
• The left and right subtrees of an operator node

represent subexpressions that must be evaluated
before applying the operator at the operator node.

o The levels of the nodes in the tree indicate

their relative precedence of evaluation.
o Operations at the lower levels must be done

before those above them.
o The operation at the root of the tree will be the

last to be done.

 2

We will now look at a larger expression tree and see how the inorde
traversals of the tree have special meanings with regard to the mathe

Fig. 5
tree fo
(7 - 2

 6

 /

An Inorder Traversal of the above expression tree yields the infix

A Preorder Traversal of the above expression tree yields the prefi

A Postorder Traversal of the above expression tree yields the post
Notice that the postfix form is Reverse Polish Notation (RPN), the f
stack calculator of Lesson 50.

5

Fig 52-13 5 + (3 * 4)

r, preorder, and postorder
matics of an expression.

2-14 A binary expression
r the infix expression
2
7
 9

) * ((6

form:

x form

fix fo
orm th
3

+3) / 9)
3

6

 (7 - 2)

: * -

rm: 7 2
at was
8

*

*

*

+

+

+

 * ((

7 2

 - 6
 used
4

-

6+3) / 9)

/ + 6 3 9

 3 + 9 / *
 for the

52-11

Binary Search Tree… Contest Type Problems

1. Which of the following replaces <*1> in the code
to the right to make the traverseAndPrint method
visit and print every node in a “Postorder” fashion?

A. if(leftNd != null) leftNd.traverseAndPrnt();
System.out.print(info);
if(rightNd!=null) rightNd.traverseAndPrnt();

B. if(leftNd != null) leftNd.traverseAndPrnt();
 if(rightNd!=null) rightNd.traverseAndPrnt();

System.out.print(info);

C. System.out.print(info);
 if(leftNd != null) leftNd.traverseAndPrnt();
 if(rightNd!=null)rightNd.traverseAndPrnt();

D. leftNd.traverseAndPrnt();

rightNd.traverseandPrnt();

E. None of these

2. Assume <*1> has been filled in correctly. Which
of the following creates a Bst object obj and adds 55
as a wrapper class Integer?

A. Integer J;
J = 55;
Bst obj = Bst(J);

B. Bst obj = new Bst(new Integer(55));

C. Bst obj;

obj.addNd(55);

D. Bst obj;
obj.addNd(new Integer(55));

 E. None of these

3. Assume <*1> has been filled in correctly and that
n objects are added to an object of type Bst in order
from largest to smallest. What is the Big O value for
searching this tree?

A. O(n log n)
B. O(log n)
C. O(n)
D. O(n2)
E. None of these

//Binary Search Tree
public class Bst
{
 public Bst(Comparable addValue)
 {
 info = addValue;
 }

 public Bst addNd(Comparable addValue)
 {
 int cmp = info.compareTo(addValue);

 if(cmp<0)
 {
 if(rightNd!=null)
 rightNd.addNd(addValue);
 else
 rightNd=new Bst(addValue);
 }
 else if(cmp>0)
 {
 if(leftNd!=null)
 leftNd.addNd(addValue);
 else
 leftNd=new Bst(addValue);
 }
 return this;
 }

 public void traverseAndPrnt()
 {
 <*1>
 }

 private Comparable info;
 private Bst leftNd;
 private Bst rightNd;
}

52-12
4. When a Bst object is constructed, to what value
will leftNd and rightNd be initialized?

A. this
B. 0
C. null
D. Bst object
E. None of these

5. After executing the code below, what does the
resulting tree look like?

 Bst obj = new Bst(new Integer(11));
 obj.add(new Integer(6))
 obj.add(new Integer(13));

 A. ArithmeticException

 B.

 C.

 D.

E. None of these

6. What replaces <*1>
that a “Preorder” trav

A. if(leftNd != n
System.out.pr
if(rightNd!=n

B. if(leftNd != n
 if(rightNd!=n

System.out.pr

C. System.out.pr
 if(leftNd != n
 if(rightNd!=n

D. leftNd.travers

rightNd.trave

E. None of these

//Binary Search Tree
public class Bst
{
 public Bst(Comparable addValue)
 {
 info = addValue;
 }

 public Bst addNd(Comparable addValue)
 {
 int cmp = info.compareTo(addValue);

 if(cmp<0)
 {
 if(rightNd!=null)
 rightNd.addNd(addValue);
 else
 rightNd=new Bst(addValue);
 }
 else if(cmp>0) 13

11

6

 {
 if(leftNd!=null)
 leftNd.addNd(addValue);
 else

 6

11
13

 leftNd=new Bst(addValue);
 }
 return this;
 }
 6

13
11

 in the code to the right so
ersal is done?

ull) leftNd.traverseAndPrnt();
int(info);
ull)rightNd.traverseAndPrnt();

ull) leftNd.traverseAndPrnt();
ull)rightNd.traverseAndPrnt();
int(info);

int(info);
ull) leftNd.traverseAndPrnt();
ull)rightNd.traverseAndPrnt();

eAndPrnt();
rseandPrnt();

 public void transverseAndPrnt()
 {
 <*1>
 }

 private Comparable info;
 private Bst leftNd;
 private Bst rightNd;
}

52-13

7. What is a disadvantage of an unbalanced Binary Search Tree?

A. No disadvantage B. Uses excessive memory C. Limited accuracy
D. Reduced search efficiency E. None of these

8. Average case search time for a Binary Search Tree that is reasonably balanced is of what order?

A. O(n log n) B. O(n2) C. O(n) D. O(1) E. None of these

9. What positive thing(s) can be said about a completely unbalanced tree that results from adding the
following integers to a tree in the sequence shown?

 { 5, 6, 7, … 999, 1000}

A. The items are automatically in numerical order along the long sequential strand.
B. The smallest number is automatically the root node. C. The largest number is the root node.
D. Both A and B E. Both A and C

10. In what order are the nodes visited in the
tree to the left if a preorder traversal is done?

13. For the tree abov
originally added to t

 A. M, G, R, A, H,
 C. M, R, A, G, H,
 E. None of these

A

M

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X R
G

C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, D, P, X, N, Q
H

E. None of these

11. In what order are the nodes visited in the

e, which of t
he binary sea

 X, P, N, Q
 X, P, N, Q

 N
Q
P

he follow
rch tree?

X

tree to the left if a postorder traversal is done?

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X
C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, H, P, X, N, Q
E. None of these

12. In what order are the nodes visited in the
tree to the left if an inorder traversal is done?

A. A, G, H, M, N, P, Q, R, X
B. M, G, A, H, R, P, N, Q, X
C. A, H, G, N, Q, P, X, R, M
D. M, G, R, A, H, P, X, N, Q
E. None of these

ing is a possible order in which the nodes were

 B. M, G, R, A, H, Q, N, P, X
 D. A, G, H, M, N, P, Q, R, X

52-14

14. What mathematical infix expression is represented by the
binary expression tree to the right?

A. (4 + 3) / 7
B. 4 / (3 + 7)
C. 7 / 4 / 3 + 7
D. (4 / 3) + 7
E. None of these

15. What mathematical infix expression is represented by the
binary expression tree to the right?

A. 5 * 2 + 4
B. 5 * (2 + 4)
C. (2 * 4) + 5
D. 5 * 2 * (+4)
E. None of these

16. Which of the following is a postfix version of the following mat

 (37 - 59) * ((4 + 1) / 6)

A. * - 37 59 / + 4 1 6
B. (37 - 59) * ((4 + 1) / 6)
C. 37 59 - 4 1 + 6 / *
D. 37 - 59 * 4 + 1 / 6
E. None of these

17. What is the minimum number of levels for a binary tree with 20 nodes

 A. 20 B. 7 C. 6 D. 5 E

18. What is the maximum number of levels for a binary tree with 20 node

 A. 20 B. 7 C. 6 D. 5 E

 7

5

hemat

?

. Non

s?

. Non

2
ical ex

e of the

e of the
3

*

+

+

4

press

se

se
4

/

ion?

53-1

Lesson 53… Queues

Standing in line:

When you stand in a line to buy tickets at a movie box office, you are standing in a
queue. This is a classic example of a First-In-First-Out (FIFO) data structure. The first
person in the movie line is the first one to leave the line (after buying tickets), and a new
person entering the line always enters at the end of the line.

Our own interface:

Is there an existing interface that’s a standard part of Java that could help us design a
FIFO queue? No, unfortunately there isn’t one that is strictly for a FIFO queue, so we
must design our own. Java does have an interface Queue that is rather generic and that
can serve as the basis for FIFO queues, LIFO queues (stacks), priority queues, etc. An
interface with all the essentials for a strictly FIFO queue is given below (For the
remainder of this book, when a queue is mentioned, it is assumed to be a FIFO queue.)

public interface Queue
{
 boolean isEmpty(); //returns true if nothing in the queue
 void enqueue(Object obj); //places object obj at the back of the queue
 Object dequeue(); //removes and returns object at front of the list
 Object peekFront(); //returns object at the front of the list
}

An underlying data structure:

As we think of implementing this in software, we first need to consider what underlying
data structure to use. A natural choice is the LinkedList class. Below, we review just a
few of the methods of the LinkedList class and how we might use them to implement the
Queue interface in a class that we will call LinkedListQueue.

 void addLast(Object obj) … use for enqueue
 Object removeFirst() … use for dequeue
 boolean isEmpty() … use for isEmpty
 Object getFirst() … use for peekFront

The implementation:

Here is the full implementation of the Queue interface in our new LinkedListQueue class.

import java.util.*; //necessary for LinkedList class
public class LinkedListQueue implements Queue
{
 public LinkedListQueue() //constructor

{ lst = new LinkedList(); }

public void enqueue(Object obj)
{ lst.addLast(obj); }

public Object dequeue()
{ return lst.removeFirst(); }

53-2

public Object peekFront()
{ return lst.getFirst(); }

public boolean isEmpty()
{ return lst.isEmpty(); }

 private LinkedList lst; // state variable
}

Some miscellaneous facts concerning queues:

The front of a queue, as it is most commonly called, is sometimes called first, start, or
beginning. The back of a queue, as it is commonly called, is sometimes called rear or
end.

The enqueue and dequeue methods for the LinkedList and ArrayList implementations of
the Queue interface both have a Big O value of O(1).

If a queue class is implemented using ordinary arrays, the dequeue method will typically
have a Big O value of O(n), where n is the size of the queue. This is due to the necessity
of “compacting” the array after removal of the item at index 0. Typically, the other
methods will have a value of O(1).

Exercise on Lesson 53

1. What is the meaning of the acronym FIFO?

2. What is the meaning of the acronym LIFO?

3. Of which type is a queue, a LIFO or a FIFO?

4. Identify each of the following as a FIFO or LIFO:

a. Cars lined up at a toll booth.
b. Students turn in tests to a teacher and place them on top of a stack. The teacher

grades the papers by selecting the next paper to grade from the bottom of the
stack.

c. Students turn in tests to a teacher and place them on top of a stack. The teacher
grades the papers by selecting the next paper to grade from the top of the stack.

d. A dishwasher in a cafeteria places newly washed trays on top of a stack and
patrons take their tray from the top of that stack.

e. Characters entered from a keyboard into a character buffer in a computer.

5. What is the difference between the peekFront and dequeue methods?

53-3

6. In the LinkedList implementation of the Queue interface, which LinkedList method is
responsible for implementing the enqueue method?

7. In the LinkedList implementation of the Queue interface, which LinkedList method is

responsible for implementing the dequeue method?

8. In the LinkedList implementation of the Queue interface, which LinkedList method is
responsible for implementing the peekFront method?

9. Is the FIFO Queue interface a standard part of Java and if so, in what package is it found?

10. What is output by the following, assuming an empty queue object q already exists?

q.enqueue(“Hello”);
q.enqueue(“Hello again”);
q.enqueue(“Good bye”);
System.out.print(q.dequeue());
System.out.print(q.peekFront());

 System.out.println(q.dequeue());

11. What is output by the following code?

LinkedListQueue q = new LinkedListQueue();
for(int j = 0; j < 5; j++)
{
 q.enqueue(j); //pre Java 5.0, q.enqueue(new Integer(j));
}

for(int j = 4; j >= 0; j--)
{
 System.out.print((Integer)q.dequeue());
 //pre Java 5.0, System.out.print(((Integer)q.dequeue()).intValue());
}

12. What is output by the following code?

LinkedListQueue q = new LinkedListQueue();
int x = 1;
Integer iw = 37; //pre Java 5.0, Integer iw = new Integer(37);
do
{
 x++;
 q.enqueue(x); //pre Java 5.0, q.enqueue(new Integer(x));
 iw = q.dequeue();
}while(x < 4);
System.out.println(iw); //pre Java 5.0, System.out.println(iw.intValue());

53-4

Use the following class for problems 13 and 14:
public class TheIntQueue {
 public TheIntQueue(int maxSize) {
 intArray = new int[maxSize];
 size = 0;
 }

 public void enqueue(int x) {
 intArray[size] = x;
 size++;
 }
 …other methods not shown…

 private int[] intArray;
 private int size;
}

13. What is the greatest number of integers that could be stored if this class is instantiated
with TheIntQueue iq= new TheIntQueue(59); ?

14. After just one call of the enqueue method, what is the value of size?

Project …Who’s Next?
Ye Olde Computer Co. has two service reps that take phone calls and help customers with
software problems. These customers are placed in a phone queue to await their turn for help.
Naturally, customers have to wait in the queue until all those waiting before them have begun
their help session and when one of the service reps is finally available.

Our task here is to determine how much time each customer must wait and add all the wait-times
together for a grand total of wait-time. The wait-time for a customer is defined as the time
elapsed from when he arrives in the phone queue until he is “dequeued” and his help begins.
Assume that as a service rep finishes helping a customer, he is immediately available to help the
next customer at the head of the phone queue.

The following data will make up a text file call Customers.dat:

5 20
7 10
10 40
15 30
20 10
25 32
35 50
43 26

In this file each line represents a customer. The first integer represents his arrival time (in
minutes from some arbitrary starting time) in the phone queue and the second is the time (in

53-5

 minutes) required to solve his problem. It is assumed that no two customers arrive at the same
time. For this data the answer is 160 minutes of accumulated waiting time, and the output is just:

 160

Create a project called WhosNext and enter the interface Queue and the class LinkedListQueue
(both on p 53-1). The class with the main method will also be called WhosNext and will consist
of the BaseClass code from Lesson 27 and the following additional code.

LinkedListQueue q = new LinkedListQueue();
…place customer data in q…

//Initialize some variables

 int TotalWaitTime = 0;
 Scanner sc = new Scanner((String)q.peekFront());
 int firstCustArrivalTime = sc.nextInt();

 int nextAvailTimeA= firstCustArrivalTime;
 int nextAvailTimeB= firstCustArrivalTime;

 //dequeue each customer and calculate his wait-time.
 while(…determine if queue is not empty…)
 {
 //Get customer data
 …dequeue next item in q and use a Scanner object to produce the
 following two variables… custArrivalTime and custHelpTime…

 //Get time this customer's help begins (the time he is dequeued)
 int dequeueTime = 0;
 if(nextAvailTimeA <= nextAvailTimeB) //decide which rep to use
 {

 …calculate dequeueTime for this customer…
(Note: This is not necessarily nextAvailTimeA because the queue may
be empty and the next customer hasn’t arrived yet.)

 …calculate nextAvailTimeA based on dequeueTime and

 custHelpTime…
 }
 else
 {
 …calculate dequeueTime for this customer…

(Note: This is not necessarily nextAvailTimeB because the queue may
be empty and the next customer hasn’t arrived yet.)

 …calculate nextAvailTimeB based on dequeueTime and

 custHelpTime…
}

…calculate thisWaitTime based on dequeueTime and
 custArrivalTime…

53-6

 TotalWaitTime = TotalWaitTime + thisWaitTime;
 }
 …print TotalWaitTime…

Project …Shifting Marquee

Create a marquee that is a circular left-shifting text message that consists of stock market prices.
Use the following file (Marquee.dat) as the input data:

7
DELL 29.85 VIGN 14.82 MOT 26.27 JDSU 1.95 PAGE .94 MCLL .32
22
VSSL 22.80 CCC 18.22 IBM 12.66 COK 11.86 AL 22.00
12
UUJ 11.01 HP 23.27 CSCO 19.86 ZW 12.75 BTDF 22.96

There are three sets of data above consisting of two lines each. The first line of each set contains
an integer that indicates how many times our test program is to shift the display to the left. The
second line is the data to be shifted. Notice that the data consists of one space between the
company and the price. That is followed by two spaces and then the next company and price are
given. (These spacing rules are also followed during shifting.)

The display will only show the 40 leftmost characters (all shift lines are at least 40 characters in
length). After the indicated amount of shifting for each line, the output will appear as follows:

.85 VIGN 14.82 MOT 26.27 JDSU 1.95 P
 IBM 12.66 COK 11.86 AL 22.00 VSSL 22
P 23.27 CSCO 19.86 ZW 12.75 BTDF 22.9

To accomplish this use a LinkedList object as the basic structure for a queue. Do not use the
LinkedListQueue class from page 53-1. Rather, use the LinkedList object directly to simulate a
queue and when you need to enqueue, use the addLast method. For dequeue operations use
removeFirst, etc. This simulation is a “quick and dirty” way to produce a queue and has the
virtue of being faster to write than taking the time to create the LinkedListQueue class.

The basic premise of this program is to create a queue with each individual character of a shift
line as a String object in the queue. Shift left by dequeueing a String (actually, a single character)
from the front of the queue and then immediately enqueueing it to the end of the queue. This is
what creates “circular” queueing.

One possible way to produce the final output is to use the toString method of the queue (actually,
a LinkedList object). That result will be enclosed in a set of square brackets and will have “, ”
between each element, all of which will need to be eliminated from the final printout.

53-7

Queues… Contest Type Problems

1. What code should replace <#1> in the
code to the right in order that the dequeue
method be properly implemented?

A. for(int j=0; j<size-1; j++)
 intValues[j] = intValues[j+1];

B. for(int j=0;j<size-1;j++)
 intValues[j+1] = intValues[j];

C. for(int j=0; j<size/2;j++)
 intValues[j] = intValues[j+1];

D. for(int j=0; j<size/2;j++)
 intValues[j] = intValues[j-1];

E. None of these
2. What code should replace <#2> in the
code to the right in order that the peekFront
method be properly implemented?

A. return intValues[1];
B. return intValues[0];
C. return intValues[size];
D. return intValues[size-1];
E. None of these

3. Assuming that <#1> and <#2> have been
properly filled in, what is output by the code
below?
 IntQueue q = new IntQueue(100);
 q.enqueue(36);
 q.enqueue(21);
 q.enqueue(7);
 System.out.println(q.peekFront() +

 q.dequeue());
A. 72
B. 3621
C. 2136
D. 28
E. None of these

4. Assuming that <#1> and <#2> have been
properly filled in, what is the running time
for a dequeue method call if a total of n
objects have previously been enqueued and
nothing has yet been dequeued?

 A. O(1) B. O(n2) C. O(log n)
 D. O(n) E. None of these
5. Assuming that <#1> and <#2> have been
properly filled in, what is output by the
following code?
 IntQueue q = new IntQueue(20);
 q.enqueue(3);
 q.enqueue(q.dequeue());
 Sysetm.out.println(q.size);

 A. 0 B. 1 C. 2
 D. throws exception E. None of these

//int array based queue. Index 0 is front of queue
public class IntQueue
{
 public IntQueue(int max)
 {
 intValues = new int[max];
 }

 public void enqueue(int val)
 {
 intValues[size] = val;
 size++;
 }

 public int dequeue()
 {
 int retVal = intValues[0];
 <#1>
 size--;
 return retVal;
 }

 public int peekFront()
 {
 <#2>
 }

 public int size = 0;
 private int[] intValues;
}

53-8

6. In the class to the right, which default constructor
could be added to the class that would automatically
enqueue the String “Santa Claus” when an object is
created with this constructor?

A. public default StringQueue();
{ enqueue(“Santa Claus”); }

B. Illegal, can’t have two constructors
C. public StringQueue()

{ enqueue(“Santa Claus”); }
D. public StringQueue(“Santa Claus”)

{ enqueue(this); }
E. None of these

7. Assuming the correct default constructor from problem
6 is properly added to the class to the right, which of the
following would be an appropriate way to create a
StringQueue object?

A. StringQueue q = new StringQueue(“gesundheit”);
B. StringQueue q = new StringQueue();
C. StringQueue q = new StringQueue;
D. More than one of these
E. None of these

public class StringQueue
{
 public StringQueue(String str)
 {
 enqueue(str);
 }

 public void enqueue(String s) { … }
 public String dequeue() { … }
 public String peekFront() { … }
 public Boolean isEmpty() { … }

 … state variables and not shown …
}

8. Assume the DblQ class queues double precision
numbers via the enqueue method and returns doubles via
the dequeue method. What is output by the code to the
right?

A. 5.015.025.03
B. throws exception
C. 5.035.025.01
D. 15.06
E. None of these

DblQ dq = new DblQ();

dq.enqueue(5.01);
dq.enqueue(5.02);
dq.enqueue(5.03);

System.out.print(dq.dequeue()

 + dq.dequeue());
System.out.println(dq.dequeue());

9. Which of the following is true of both stacks and queues?

 A. The items are stored in a definite sequence.
 B. Items in the middle of the sequence of items are directly and immediately accessible.
 C. Items can be removed from only one end of the sequence of items stored.
 D. More than one of these
 E. None of these

10. Qclass is a class implementing an ArrayList based
queue. What will be the output of the code to the right?

A. throws exception
B. null
C. foggy nights
D. Nothing
E. None of these

Qclass qq = new Qclass();

System.out.println(qq.dequeue());
qq.enqueue(“foggy nights”);
System.out.println(qq.dequeue());

54-1

Lesson 54… Inner Classes

Inner classes are classes inside other classes. The class in which an inner class resides is known
as the outer class. Inner classes are typically only used when the class is very specialized and not
likely to be of any use other than in the outer class in which it resides.

Inside a method:

There are two distinct ways to apply an inner class. The first is when the inner class is
inside a method. This case is illustrated below:

public class OuterClass
{
 public static void main(String args[])
 {

 class InnerClass
 {

 InnerClass(int val) //constructor
 {
 icDataMember = val;
 }

 int icMethod()
 {
 return (icDataMember + ocMethod() + ocDataMember);
 }

 int icDataMember;

 }
 int a = 2;
 InnerClass obj = new InnerClass(100);
 System.out.println(obj.icMethod());

 }

 private static int ocMethod()
 { return 10; }

 public static int ocDataMember = 3;
}

Five important rules:

• The class signature class InnerClass cannot be prefaced by private or public.
• The code of the method in which the inner class resides must come after the inner

class.
• All code in the inner class has access to all methods and state variables of the outer

class.
• Local variables in the method in which this class is placed are not accessible to the

inner class.
• The inner class is only accessible from inside the method in which it resides.

54-2

Project… Inner Class Inside a Method

Create a new project called InnerClassInMethod. Create a class inside that project as shown on
the previous page. Pay special attention to the test code in bold print. Its output should be 113.

The return statement of icMethod sums three values.

• Which demonstrates accessibility to outer class state variables?

• Which demonstrates accessibility to outer class methods?

• Which demonstrates accessibility to the inner class state variables?

Modify the return statement of the icMethod method to read:
 return (icDataMember + ocMethod() + ocDataMember + a);

What is the result when you try to compile? Why?

Create a new method within the outer class as follows:

 public static void ocMethod1()
 {
 InnerClass obj = new InnerClass(50);
 }

Compile and state any conclusions to which it brings you.

Inside an outer class:

Another way to create an inner class is to place it directly inside an outer class (but not
inside a method) as follows:

public class OuterClass
{

 public void test()
 {

 int a = 2;
 InnerClass obj = new InnerClass(100);

System.out.println(obj.icMethod());
 }

 private static int ocMethod()
 {
 return 10;
 }

 public static int ocDataMember = 3;

54-3
//***
 class InnerClass
 {
 InnerClass(int val) //constructor
 {
 icDataMember = val;
 }

 int icMethod()
 {
 return (icDataMember + ocMethod() + ocDataMember);
 }

 int icDataMember;
 }
 //***

}

Several important rules:
• The class signature, class InnerClass, can be prefaced by public or private; however

they have no effect.
• The inner class may be placed at any position (relative to the remaining code) within

the outer class.
• The methods and state variables of the inner class are accessible from any of the

methods of the outer class via objects instantiated from the inner class.
• All methods and state variables of the outer class are accessible to methods of the

inner class.

These rules are demonstrated with the following project.

Project… Inner Class Inside an Outer Class
Create a new project called InnerClassInOuter. Create a class inside that project as shown on the
previous page. Pay special attention to the test code in bold print. It will also be necessary to
create a Tester class as follows:

public class Tester
{

 public static void main(String args[])
 {

 OuterClass oc = new OuterClass();
 oc.test();

 }
}

Execute this main method and the output should be 113 as before.

Add the following line of code to the main method above, compile, and execute.
 InnerClass ic1 = new InnerClass(14);

To what conclusions does this lead you?

54-4

Exercise for Lesson 54

1. What’s wrong, if anything, with the following code?

public class Apple
{
 public void hal()
 {
 System.out.println(“Hello”);
 x ++;

 class Orange

{
 …

}
 }

 public int x = 2;
}

2. In the code for problem 1, which class is the outer class?

3. In the code for problem 1, which class is the inner class?

Use the following code for questions 4-7.

public class RayVac
{
 public static void main(String args[])
 {

 class Calcs
 {

 Calcs(int val)
 { data = val; }

 int inMethod()
 {
 return (data + methodOc() + dataOc);
 }

 int data;

 }
 int b = 2;
 Calcs obj = new Calcs(50);
 System.out.println(obj.inMethod());

 }

54-5

 private static int methodOc()
 {
 return 1;
 }

 public static int dataOc = 3;
}

4. What is output when the main method runs?

5. Comment on the legality of replacing the single line of code in methodOc with the following.

Calcs ob = new Calcs(44);
int j = ob.inMethod();

6. What is the signature of the constructor of the inner class?

7. If the keyword public in public static int dataOc = 3; was changed to private, would the

data member dataOc still be accessible from within the inner class?

8. Is it legal to place an inner class inside an outer class without it being inside a method of the

outer class? If so, does it matter at what position it is placed (as long as it’s not inside a
method)?

9. Is an inner class ever accessible from outside the outer class?

55-1

Lesson 55… Heaps

Special binary tree:

A special type of binary tree, a heap, has two types, a min heap and a max heap. Fig 55-1
below illustrates a min heap, the type primarily discussed in this lesson. From this point
on, if mention is made o a heap in general, it may be assumed that it is a min heap.

C

G D

N Z W P

Parent node always smallest:

Notice that each parent
In a max heap, just the
child nodes. There is no
containing G has N as i
problem at all with inte
requirement of being la

Complete tree:

In addition to the requir
also required that the tr
missing leaf nodes are c

Fig. 55-2 A complete
binary tree. Missing

nodes must be leaf
nodes on the bottom

level, far right.

Full tree:

Leaves need not be mis
tree (all leaves present
a full tree.
f

Fig. 55-1 Min type heap
characterized by each parent
node being smaller than its
children.

A

M

S Q

U T R Y

 node in the above min heap is less than either of its child nodes.
opposite is true. Do not look for any relationship between the two
ne. Looking at the example above, we observe that the node
ts left child node and Z as its right child node. There would be no
rchanging N and Z. Notice that they would still meet the
rger than their parent node.

ement that every node be small
ee be complete. A complete bin
onfined to the ttom level and

C

G D

N Z W P

sing from a complete tree, and i
on the bottom level). The binary
er than any node in its subtree, it is
ary tree is one in which any
 on the far right.

A

M

S Q

 U

n that event, it is also called a
 tree in Fig. 55-1 is an examp
bo

 full
le of

55-2

Two rules for a heap:

In summary, the two requirements that a binary tree qualify as a heap are:
1. The tree must be complete.

2. Each node is smaller than any value in its subtree. Of course, this means each

subtree is also a heap.

(Unlike a binary search tree, heaps are permitted to have two nodes of the same value.)

Indices of a heap:
For convenience the nodes in a binary tree are index
Proceed down one layer, and then number from left
55-3.

A

C M

G D S

N Z W P U T12 13 11 10 9

6 5 4

3 2

1

8

Adding a node:

Suppose we wanted to add a node with value J to the
cannot permanently attach it as a child node to Q sin
parent being of a smaller value than the child. Someh
way that the tree remains complete and the new node
all values in its subtree. Here is the way to accompli
Q so that the tree remains complete. This is shown in

A

C M

G D S

N Z W P U T11 10 9

6

12 13 1J

5 4

3 2

1

8

We note that Q is larger than J so they need to be swapped.
ed starting with 1 on the root node.
 to right. This is illustrated in Fig.

Fig. 55-3 A heap with
properly indexed nodes. Note
that indexing does not start
with 0 as is usually the case in
Java.

Q

7

 heap above (Fig. 55-3). Clearly, we
ce that would violate the rule of the
ow we must add the new node in a
 finds a position so that it is less than

sh this. First, add J as a new leaf for
 Fig. 55-4 below.

Fig. 55-4 J has been added as
a new node.

Q

4

7

This is shown in Fig 55-5 below.

55-3

A

C

G D

N Z W P 10 9

5 4

2

1

8

Next, e notice that M and J are o

C

G D

N Z W P 10 9

5 4

2

1

8

J has now fallen in o its correct po
items the maximum number of reh

Removal o a node from a heap:

We will only demonstrate h
common node to remove. T
priority queues. Consider th

C

G D

N Z W P 10 9

5 4

2

1

8

The next step is to cut off the last l
Fig. 5 -8 below.

Fig. 55-5 Q and J have now
been swapped.

M

S J

U T11

6

12 13 14Q

7

3

ut of o der, so wap th m as shown in Fig.55-6 below.

Fig. 55-6 M and J have now
been swapped.

A

J

S M6

12 13 14

3

7
U T11 Q

sition, so this reh ap-up process is finished. In a heap with n
eap comparisons would be log2(n) (Big O(log n)).

ow to remove the root node since that is by far the most
his will be an important operation in the next lesson on
e foll wing tr e in which t e root node has been removed.

M

S Q

U T12 13 11

6

3

eaf, T, and place it in the ro
h

Fig. 55-7 Root node has been
removed.

7

ot node position. This is shown in
t
 e
f

e
w
5

r

o

 s
e

55-4

Fig. 55-8 The T leaf has been
cut off and placed in the root.

T

C M

G D S Q 7

N Z W P U12 11 10 9

6 5 4

3 2

1

 8

T is now illegally larger than both of its children, C and M. The procedure now is to reheap-
down by swapping T with its smaller child. Therefore, we will swap T and C as follows.

Fig. 55-9 T and C have been
swapped.

C

T M

G D S Q 7

N Z W P U12 11 10 9

6 5 4

3 2

1

 8

 T is still not in its correct position since it is larger than its two children, G and D. Swap T with
its smaller child, D.

Fig. 55-10 D and T have been
swapped.

C

D M

G T S Q 7

N Z W P U12 11 10 9

6 5 4

3 2

1

 8

Still, no cigar! T and P must now be swapped to complete the reheap-down process. In a heap
with n items, the maximum number of reheap comparisons would be log2(n) (Big O(log n)).

55-5

Fig. 55-11 P and T have been
swapped.

C

D M

G P S Q

N Z W T U12 11 10 9

6 5 4

3 2

1

7

 8

The heap is now correct with T in its correct position.

Exercise on Lesson 55
Unless stated otherwise, all references to heaps in these questions are assumed to be min heaps.

1. What are the two requirements of a binary tree in order that it qualifies as a heap?

2. What is a full tree?

3. What is a complete tree?

4. What is the difference in a min heap and a max heap?

5. Suppose some heap node values and their corresponding indices are as follows:

B,1 D,2 N,3 H,4 E,5 T,6 R,7 O,8 Y,9

Draw the heap that corresponds to this data.

6. Does the root of a heap always contain the smallest value?

7. Describe the process for removing the root node.

8. Can we always depend on the largest value of a heap to be one of the leaves?

9. Does every node in a heap have to have a child?

10. Describe the process of adding a node to a heap.

55-6
11. Remove the root node from the following tree and draw the resulting new tree after the

reheap-down procedure has finished.

A

C M

G D Q

N Z W P

12. Are two nodes ermitted to have the sa

13. Are all hea s binary trees?

14. Are all binary trees heaps?

15. What is the most common node to remo

16. What type of heap requires the value of

subtree?

17. Add a node with value H to the tree bel

up process.

C

G D

N Z W P

18. What is the maximum Big O value for

19. What is the maximum Big O value for
S

me value a heap?

ve in

 each

ow. D

A

the in

the re
 a heap?

 node to be greater than a

raw the resulting new h

M

S Q

sertion of a new node int

moval of the root node fr
 p
 in
p

ny value in its

eap after the reheap-

o a heap?

om a heap?

55-7

Project… Printing a Heap

The purpose of this project will be to print a heap. The reason this is important is that in the next
lesson we will implement a priority queue base on an array heap. During development and
debugging it is important to be able to test the
of the heap.

Create a text file called HeapData.in with the f

A
C
M
G
D
S
Q
N
Z
W
P
U
T

Notice that the sequence of these items is in the
Create a project called PrintTree with class Tes
HeapData.in text file and print the heap in the

A
C M
G D S Q
N Z W P U T

It is suggested that each letter be put into an ar
heaps (index 0 in the array will be unused). Th
to start a new line. Notice a new line is started
character with index 3 is printed, after the char
with index 15 is printed…. These indices form
 21-1, 22-1, 23-1, 24-1, …

Use an if statement to detect when these charac

d

heap at intermediate points by viewing a printout

ollowing conten

 inde
ter th
follow

ray sta
e only
after t
acter
 the fo

ter ar
x sequence of nodes in t
at will input the letters f
ing fashion.

rting with index 1 as is
 real challenge here is in
he character with index
with index 7 is printed, a
llowing pattern:

e printed and then start a
t.
he heap in Fig. 55-3.
rom the

conventional with
 determining when
1 is printed, after the
fter the character

 new line.

55-8

Project… A Heap of Trouble (advanced)

The printout produced by the previous project is just barely better than no printout at all. What
we need is a printout that looks closer to the real thing,…like the following:

 A

 C M

 G D S Q

N Z W P U T

Fig. 55-12 A more desirable
printout. Even though there are
no connecting lines we can still
tell what a parent node’s
children are.

To produce this printout we need to notice several things about the horizontal spacing. In order
to see some patterns our first step will be to place the printed characters in a grid as in Fig. 55-13.

 7 spaces A

 3 sp C 7 spaces M

1sp G 3 sp D 3 sp S 3 sp Q

N 1sp Z 1sp W 1sp P 1sp U 1sp T

Fig. 55-13 Detail of desired
horizontal spacing. As we move
from row to row the number of
spaces form a predictable
pattern.

The spacing in the grid above falls into two different distinct patterns.

1. As we proceed down the rows the leading spaces (lighter shading above) form the
following pattern where n (4 for this example) is the number of levels of the tree.

7 = 2n-1-1 level 1
3 = 2n-2-1 level 2
1 = 2n-3-1 level 3
0 = 2n-4-1 level 4

2. As we proceed down the rows the inner spaces (darker shading above) form the

following pattern where n (4 for this example) is the number of levels of the tree.
inner spaces do not apply to the first level
7 = 2n-1-1 level 2
3 = 2n-2-1 level 3
1 = 2n-3-1 level 4

The code you write for the Tester class in this project, HeapOfTrouble, should detect which row
we are on as was suggested in the previous project and apply the appropriate formulas to
generate the desired number of spaces. We should mention at this point that we are assuming that
the console output of your IDE uses monospaced fonts. Most do. If your IDE lets you select
fonts, choose one of the Courier fonts. They are monospaced which means each character takes
up the same amount of horizontal space when printed. See Appendix AB for more on
monospaced fonts.

55-9

Another critical aspect of this project is the ability to determine from the number of items to be
printed just how many levels (n) there will be for the tree. We will use a logarithm base 2 to
accomplish this. The following chart shows the relationships involved.

Index (i) Log2(i) Value (int) Log2(i) Tree Level (n)
1 Log21 0.0 0 1
2 Log22 1.0 1 2
3 Log23 1.5849624872207642 1 2
4 Log24 2.0 2 3
5 Log25 2.321928024291992 2 3
6 Log26 2.5849626064300537 2 3
7 Log27 2.8073549270629883 2 3
8 Log28 3.0 3 4
9 Log29 3.1699249744415283 3 4
10 Log210 3.321928024291992 3 4
11 Log211 3.4594316482543945 3 4
12 Log212 3.5849626064300537 3 4
13 Log213 3.700439691543579 3 4
14 Log214 3.8073549270629883 3 4
15 Log215 3.906890630722046 3 4
16 Log216 4.0 4 5
… … … … …

 Table 55-1

Math.log(x) is given for base e, so to calculate log base 2 of x we must use the following
standard formula for converting log bases:
 Math.log(x) / Math.log(2)

Finally, the number of tree levels (n) required for x items is given by:
 int n = (int)(Math.log(x) / Math.log(2)) + 1;

Use portions of the last project to produce a new project, HeapOfTrouble, in which we have two
classes, Tester and HeapPrinter. The HeapPrinter class will have a static method called
printHeap. By putting this static method in a class by itself we will easily be able to use this
class for testing our implementation of an array heap in the next lesson.

Use the Tester class to input the HeapData.in file from the last project. In main of Tester be sure
to pack the incoming data into an array in which the first element of the file has index 1. In the
printHeap method determine the number of levels and the number of spaces needed as discussed
above. Use these ideas to print the heap so as to look like Fig. 55-12.

Admittedly, the heap printer from this project is very simplistic in that it assumes that each node
of the heap prints as just a single character. What if the nodes to be printed consist of differing
numbers of characters? At first this might seem like a difficult task to tackle; however, all we
need to do is determine the maximum number of digits to be printed and then set up print
“fields” that always print this same width. When printing any String representing a node having a
smaller number of characters than this maximum field width, we simply “pack” both sides of the
String with the appropriate number of characters so as center the characters in the field.

56-1

Lesson 56… Priority Queues

Not like an “ordinary” queue:

In Lesson 53 we learned about queues behaving in a FIFO fashion. However, in this
lesson we learn that if our queue is a priority queue, it will behave in an entirely different
way. The first item inserted will not necessarily be the first item out. Rather, we assign a
priority to the items and they are removed from the queue (dequeued) with the highest
priority item removed first.

Examples of priority queues:

We will offer three examples of real life situations that use priority queues. In these
example you will find items waiting in a queue to be processed in an order corresponding
to their priority:

1. An AWACS Air Force plane is flying in the vicinity of a theater of war
operations. It collects information electronically from hundreds or even
thousands of sources from the various battlefields and places them in a priority
queue while awaiting processing. Suppose one item in the queue is information
about a flight of enemy aircraft approaching one of our aircraft carriers. Another
piece of information waiting in the queue might be an intelligence report about
movement of a small enemy truck convoy many miles from the main battle.
Clearly, the enemy aircraft approaching our carrier will have the highest priority
in the queue and should be processed immediately in order to protect the carrier.

2. A print server is a computer to which a printer is attached. Other “client”

computers on the network send print jobs to the server where they are cached
(temporarily stored) while waiting their turn to print. The printer attached to the
print server can only print one job at a time. It is the job of the print server to put
the waiting jobs in a queue (a priority queue) and assign a priority to each job.
Suppose there are ten small jobs waiting to print where each is only a page or so.
Also, suppose there is one very large job (a 500 page pdf file) waiting to print. A
reasonable way to setup the print server would be to give the lowest priority to
the large job. Thus, the small jobs would print first and the ten people sending
those jobs would be kept happy. Likely, the person sending the large job would
not expect to get his printout very quickly anyway.

3. Microprocessors have provisions for “interrupts” of both the hardware and

software type. An interrupt does just what it sounds like it might do. The
processor suspends what it is doing, takes on another task, and when finished,
returns to the first task. It is even possible for one interrupt to interrupt the task of
a previous interrupt.

 To understand interrupts, think of an executive sitting at a desk writing a
report when the phone rings. Work is suspended on the report while the
phone is answered. During the phone conversation a secretary slips a piece
of paper in front of the executive for a signature. Signing the paper is only
a momentary distraction after which the phone conversation is continued.
After hanging up the phone, work is resumed on the report, and so it is
with interrupts. One task interrupts another, and when completed, the
original task continues.

56-2

Now think of a computer system monitoring several processes in a chemical
plant. Suppose one possible interrupt from the monitoring would involve the
processing of an impending overflow of an acid tank. Another might be an
interrupt resulting from the temperature rising a little too high in a storage room.
Clearly, the overflow of the acid tank must be handled immediately and would be
elevated to the highest priority in the priority queue thus enabling it to be handled
first.

Selecting a data structure:

Now we turn our attention to actually creating a priority queue in software. First, we must
select a data structure with which to implement our priority queue. The simplest would be
an array; however, in order to enqueue a new object we would need to scan the array for
proper positioning in the array. An alternative would be to order the array, and then
adjust the order as new objects are enqueued. If the number of items in the array is very
large, these operations can be quite time consuming. ArrayLists and LinkedLists would
suffer the same performance penalties.

Finally, we settle on a heap as ideal data structure for our priority queue. The heap we
studied in the previous chapter is tailor-made for service as a priority queue since
“dequeuing” would simply be done by removing the root node. This is because the value
of the root node is always guaranteed to be smaller than the value of any other node in the
min heap. Since small node values are at the top of the heap, we must require higher
priority items in our priority queue to have the lowest node values. This is easily
handled mathematically by devising a scheme in which we would consider “high”
priority to yield a low “score” that would be assigned as a node value.

The PriorityQueue interface:

What we need first is a priority queue interface. We will devise our own since one is not
provided as a standard part of Java. The interface presented below is “standard” in that it
is the one used by most programmers implementing a heap based priority queue.

public interface PriorityQueue
{
 void enqueue(Object obj); // sometimes called add
 Object dequeue(); // sometimes called removeRoot or removeMin
 Object peek();
 boolean isEmpty();
}

Array is the winner after all:

When selecting an underlying data structure for the heap, strangely enough, the simple
array rejected earlier resurfaces as the most efficient candidate. This is especially true if
we number the nodes (the indices of the array) as shown in Fig.55-3 of the last lesson.

56-3

Project… Who Has Highest Priority?

Notice in the implementation of the PriorityQueue interface on the following page (put it all in a
new project called HighestPriority), there is missing code that must be supplied in the
implementing class. Supply the necessary code for both the peek, isEmpty, enqueue and dequeue
methods: the code is quite simple. The most complex methods of the class, reheap_up and
reheap_down have already been presented in Lesson 55. Don’t forget to create the interface first,
or the class won’t compile. For your convenience in testing your new HeapPriorityQueue class,
a Tester class is supplied as follows.

public class Tester
{
 public static void main(String args[])
 {

 HeapPriorityQueue hpq = new HeapPriorityQueue();
 Integer iw;

 iw = 8; //pre Java 5.0, iw = new Integer(8);
 hpq.enqueue(iw);

 iw = 2; //pre Java 5.0, iw = new Integer(2);
 hpq.enqueue(iw);

 iw = 1; //pre Java 5.0, iw = new Integer(1);
 hpq.enqueue(iw);

 iw = 9; //pre Java 5.0, iw = new Integer(9);
 hpq.enqueue(iw);

 iw = 5; //pre Java 5.0, iw = new Integer(5);
 hpq.enqueue(iw);

 iw = 4; //pre Java 5.0, iw = new Integer(4);
 hpq.enqueue(iw);

 while(!hpq.isEmpty())
 {
 System.out.println(hpq.dequeue()); //Prints in sequence 1, 2, 4, 5, 8, 9
 }

 }
}

Notice from the PriorityQueue interface that our priority queue (heap) contains objects. In the
following implementation it is assumed that those objects implement the Comparable interface.
Supply the missing code as described in the project above.

56-4
public class HeapPriorityQueue implements PriorityQueue
{

 public HeapPriorityQueue() //constructor
 {
 obj = new Object[100];
 }

 public boolean isEmpty()
 {
 …
 }

 public Object peek()
 {
 …
 }

 public void enqueue(Object ob)
 {

 //Add the new node as the last leaf and then reheap up
 …

 }

 public Object dequeue()
 {

 //Cut off last leaf and place in root, decrement numObjects, and then
 //reheap down. Then return the original root.
 …

 }

 private void reheap_down()
 {

 //The value in the root moves down the heap until it falls into its
proper place
 //At each step as it moves down, it is swapped with its smaller child.
 Object root = obj[1];
 int parentIndx = 1;
 int childIndx = 2;
 while(childIndx <= numObjects)
 {

 if((childIndx < numObjects) &&

(((Comparable)obj[childIndx+1]).compareTo(obj[childIndx])<0))
 {
 childIndx++;
 }

 if(!(((Comparable)obj[childIndx]).compareTo(root)<0))
 { break; }

56-5
 obj[parentIndx] = obj[childIndx];
 parentIndx = childIndx;
 childIndx = parentIndx * 2;

 }
 obj[parentIndx] = root;

 }

 private void reheap_up()
 {

 //The new node moves up the tree swapping places with its parent
 //until it falls into place.
 Object lastLeaf = obj[numObjects];
 int childIndx = numObjects, parentIndx = childIndx / 2;
 while((parentIndx >= 1) &&
 (((Comparable)lastLeaf).compareTo(obj[parentIndx])< 0))
 {

 obj[childIndx] = obj[parentIndx];
 childIndx = parentIndx;
 parentIndx = childIndx / 2;

 }
 obj[childIndx] = lastLeaf;

 }

 private Object obj[];
 private int numObjects = 0;

}

Project… Smile for the Camera
In a new project called SnapShot (a modification of the HighestPriority project) we will further
refine the use of the HeapPrinter class from Lesson 55 so as to print a “snapshot” of a priority
heap. First, copy everything from HighestPriority into the new SnapShot project. Then paste in a
copy of the HeapPrinter class from Lesson 55. In it the printHeap method is expecting an array
of characters. The HeapPriorityQueue class maintains an array of Object type objects that
comprise the data for the heap; that will be our starting point.

Modify the HeapPriorityQueue in the following ways:

• Make the data member obj[] public.
• Provide a public method getArray that will return this array.
• Make the data member numObjects public.

Now modify the Tester class in the following ways:

• Eliminate the loop that dequeues.
• Retrieve the Object array from the HeapPriorityQueue object.
• Retrieve the numObjects data member.
• Create a character array ch[] that contains the equivalent of the numbers in the Object

array just retrieved.
• Call the printHeap method and pass both the Object array and the numObjects variable.

56-6
The resulting printout should look like this:

 1

 5 2

9 8 4

**

Heapsort:

A heap based priority queue can be used for sorting an array if we do the following:

• Enqueue array items in any order into a heap.
• Dequeue all the items. The order in which they are dequeued will automatically

be in ascending order. As each item is dequeued, store it back in the original array
starting at index 0.

The following is a code fragment illustrating a heapsort. It is assumed that an array of
objects, SomeClass obj[], already exists and that the class from which they were
instantiated implements the Comparable interface. It is also assumed that object
HeapPriorityQueue hpq already exists.

…
for(int j = 0; j < obj.length; j++)
{
 hpq.enqueue(obj[j]);
}

 int indx = 0;

while(!hpq.isEmpty())
{
 obj[++indx] = (SomeClass)(hpq.dequeue());
}

The obj array has now been sorted in ascending order. Since we used enqueue and dequeue
operations (both of which are O(log n)), the heapsort algorithm also yields a time complexity
analysis of O(log n).

56-7

Exercise on Lesson 56

Assume all heaps in this exercise are min type heaps.

1. How does removal of objects (dequeuing) from a priority queue differ from a regular
queue?

2. Object A has higher priority in a heap based priority queue than object B. Futhermore,
suppose that val is the variable associated with objects that is ultimately used when
comparing node values. Which of the following would be a valid pair consistent with
these facts?

a. A.val = 37
B.val = -19

b. A.val = -5
B.val = 0

c. A.val = 18
B.val = 18

d. None of these

3. Could customers lined up at a hot-dog stand be considered a priority queue?

4. Could patients waiting in an emergency room be considered a priority queue?

5. When performing an enqueue operation on a priority queue, which fundamental operation
is done?

a. Remove the root node
b. Remove last leaf
c. Add last leaf
d. None of these

6. When performing a dequeue operation on a priority queue, which fundamental operation
is done?

a. Remove the root node
b. Remove last leaf and place it in root
c. Add last leaf
d. More than one of these

7. Which is the most efficient underlying data structure to use when implementing a heap
used in a priority queue?

a. Array
b. LinkedList
c. ArrayList
d. Map
e. Set

56-8

8. What is the maximum Big O value for an enqueue operation on a heap based priority
queue?

9. What is the maximum Big O value for a dequeue operation on a heap based priority
queue?

10. Describe the two fundamental operations in executing a heap sort on an array of objects.

57-1

Lesson 57… Lookup Tables and Hashing

Is there a faster way?

Suppose we need to lookup something in a data structure. If the structure is an array that
has been sorted, we could use a binary search to quickly find the desired item. A binary
search tree would also be fast to search. As fast as these techniques are, they do take
some time (O(log n)) to execute, and especially so if we consider the removal of tree
nodes and the onerous task of rebalancing a tree. Is there a faster way? Yes, if we use a
lookup table or perhaps a hash table.

Lookup tables:

One of the benefits of using a lookup table is that we can completely avoid doing a
search. If the table is properly constructed, we just specify an index within an array and
immediately access the desired element stored there.

In lookup tables the item we wish to find is addressed with a key. That key corresponds
to a value that we retrieve from the table. The key and its corresponding value in a table
are very important concepts in both the simple lookup table and its cousin, the hash table.

• The key is initially known and is used to access a slot in the lookup table.
• The value is what we want to retrieve from the lookup table. The key sends us

to only one particular slot in the table.

As an example, think of the zip code 78377 as being a key that yields a value of
“Refugio, Tx” from a lookup table. Similarly, a key of 76869 would yield a value of
“Pontotoc, Tx” from the same table.

In simple cases the key is the array index itself. In other cases the index is easily
computed from the key. Both of these cases are discussed below.

The key is the index itself:
An example of this is a color palette, which is a very efficient use of memory
space to store a color image. In this scheme, every pixel in the image is examined
and of the billions of possible colors, only 256 colors are decided on that could
best be used to represent the entire picture. Then, each pixel in the image is
assigned a number between 0 and 255 representing one of these colors. When we
receive one of these “palletized” images, all we get is a series of bytes, each
holding one of the color numbers ranging from 0 to 255. Each byte represents the
color of an individual pixel. This information would be useless unless there was a
way to “decode” what these numbers mean. For example, suppose one of these
bytes stores the number 187. How is the computer that is to render the picture to
know what color to produce for this particular pixel? Fortunately, each palletized
image also comes with three “decoding” tables. These tables are the red, green,
and blue tables that give the intensity needed for each of the color guns in the
display monitor. Thus, for a palletized image, three lookup tables are involved in
displaying the correct color for any particular index. The 256 color intensities for
these tables are arranged as a simple array addressed with indices ranging from 0
to 255. Each of these indices, of course, corresponds to one of the original 256
colors selected for our image.

57-2

Suppose a pixel has a color palette number of 187. To produce this color
on the screen, we access index 187 in the following three tables:

Index red[] array
0 192
1 17
…
187 67
…
255 201

Index green[] array
0 119
1 238
…
187 108
…
255 249

Index blue[] array
 0 14
 1 4

…
 187 198

…
 255 82

 Table 57-1 Table 57-2 Table 57-3

The RGB value of color 187 would be set for display on a monitor with a
method similar to rgb(red[187], green[187], blue[187]) which is
equivalent to rgb(67, 108, 198). In this example the key (the index itself)
is 187 and the three tables yield the values of red=67, green=108, and
blue=198. It is the combination of these colors that will produce the color
desired for palette value 187.

The index is easily computed from the key:
Suppose we have the function f = sin2(.001x+3) + ln(x4+1) + 2x that needs to be
computed many times in a program where we know that x is restricted to 0 and
positive multiples of 5 up to a maximum value of 10,000 (0, 5, 10, 15,…9995,
10000). Furthermore, let’s assume that the performance of this program is critical
and that the code must execute as quickly as possible.

We could pre-compute all values for the f formula and store in an array with
indices from 0 to 10,000. When a value for f is needed for a particular x, we
would simply access it as f[x]. This scheme, however, would be very wasteful of
memory space since not all 10,000 indices are used. A more practical approach
would be to first divide x by five and have the array organized as shown in Table
57-4 below.

Key value (x) Index (i = x / 5) f Value using x
0 0 f[0] = 0.019914880394935608
5 1 f[1] = 16.45789337158203
10 2 f[2] = 29.227657318115234
… … …
9,995 1999 f[1999] = 20027.01171875
10,000 2000 f[2000] = 20037.017578125

 Table 57-4

This scheme would use one fifth the memory and only suffers a small time
penalty (the time required to divide by 5).

The two examples above illustrate the following three reasons why we would want to use a
lookup table:

57-3

1. Disorganized or nonsensical data can be organized into a table for easy lookup if the
key to finding the data can be used as an index or an index can be easily computed from
it. The color palette discussed above is an example.

2. Notice that with the color palette scheme, memory is saved since the image in the

example above only occupies about one third the memory that it would have if we had
allocated three bytes to each pixel (one byte for each color).

The reader should be aware that this palletized scheme for images is seldom used
anymore. Its original advantage was that it saved memory. Today, memory is so
abundant and inexpensive that palletized images are rarely used (rather, 3 bytes or
more are used per pixel). While the scheme does save memory, the quality of
most images suffer since they rely heavily on considerably more than just 256
different colors. However, the point is made that the scheme does save memory
and could be used in applications other than images.

3. When performance is an issue, using a lookup table of precomputed values is often

faster than computing the formula in real time each time it is needed.

When lookup tables are not easily implemented:

In summary, lookup tables are only practical if the key is directly the same as the index
or, at least is easily converted to an index. Not all organizations of data meet these
criteria. There are two distinct cases in which the organization of data into a lookup table
is impossible or at least not easily implemented.

The method of converting a key into an index is not immediately obvious:

Consider a registry of guests staying at a hotel. Table 57-5 shows a mapping of
guest’s names to room numbers (other information about the guest could also be
part of the value).

Key, Guest Name Index Value, Room number
 0
… … …
Clinton, Bill 16 1102
…
Bush, George 39 204
…
Washington, George 139 1486
… … …
Lincoln, Abraham 147 159
…
 179

 Table 57-5

It is not at all obvious how the String “Clinton, Bill” produces the index 16. The
technique that accomplishes this is referred to as hashing. Somehow the hashing
code must take names and convert them into an even distribution of indices from
0 to 179 (there are 180 hotels rooms, and thus a need for 180 indices). A little
later we will look at a specific technique that will hash these names.

57-4

Inefficient use of memory space:

Keys can be converted into indices; however, in some cases, keys that would
otherwise be easily converted to indices, tend to form clusters or bunches that
results in an unacceptable excess of wasted memory. Consider the mapping of
keys to values in Table 57-6 below in which dates are paired with battles from
American History. The battles are from the Revolutionary War, the War of 1812,
and the Civil War, and therefore, form three distinct date clusters. If we use the
indices in the column labeled Index 1, the waste is absolutely dreadful. The
indices run from 0 to 18,631,023. This is clearly unacceptable. In the column
labeled Index 2, things are a little better where we just subtract 17,761,103 from
the indices of the Index 1 column. This is an improvement, but still not good
enough. In the Index 2 column, the indices go all the way to 869, 920, which is
still far too wasteful.

The clustering is also a concern. Even if we could get the indices in a cluster to
pack tightly together, we would still have all the wasted indices between clusters.
Is there a way to generate the indices so that the indices are evenly distributed
over the range, say, 0 to 75? The way to do this is again, of course, hashing.

Key, Date Index 1 Index 2 Value, Battle

 0
…

1776 11 03 17761103 0 Battle A
…

1776 12 15 17761215 112 Battle B
…

1777 03 21 17770321 9218 Battle C
…
…
…

1812 05 18 18120518 359415 Battle D
…

1812 07 25 18120725 359622 Battle E
…
…
…

1861 04 22 18610422 849319 Battle F
…

1862 01 24 18620124 859021 Battle G
…

1863 10 23 18631023 869920 Battle H

 Table 57-6

Hashing techniques:

Now that we have clearly defined a need for this thing called hashing, how do we do it?
Let’s begin by recognizing that it is an extension of the lookup table concept. The
differences are:

• A hash function (method) uses the keys to create the indices.

57-5

• There is no longer a one-to-one correspondence between keys and indices.

Several keys could map to the same index.
• The table is now called a hash table.
• The hash table will now store the keys as well as the associated values.

Basic hash function requirements:

Here are the requirements of a hash function that will determine the indices for the array
that is the basic structure for the table:

• The range of needed indices should be clearly defined. The hash function will
produce indices strictly in this range.

• The hash code needs to create a reasonably even distribution of indices within
the specified range.

• There must be some algorithm that generates indices from the expected keys and
yet adheres to the above two requirements.

• The algorithm must execute reasonably fast or we might as well just use an
ordered array or a binary search tree as the basic structure for our data.

• The generated indices must minimize “collisions”. See the following discussion
for more on collisions.

Collisions:

The phenomenon of collisions is one of the major differences between lookup and hash
tables. In a lookup table, every key maps to just one index: in fact, in many cases the
key is the index. In hash tables it is possible for the hashing function to map several keys
to the same index. This is known as a collision and is clearly undesirable, but at the
same time, unavoidable. There are several ways to handle collisions:

• Chaining In this approach every element in the hash table is referred to as a
bucket and is implemented as a structure that can hold multiple values. This
structure could be an array, ArrayList, LinkedList, or perhaps a binary search tree.

• Probing A probing function converts the current index at the point of collision
into a new, unused index where the value can be stored. The probing function
keeps trying until it finds a vacant slot into which to store the value. There are
many different ways to do probing. Two of the simpler ones are linear probing
and quadratic probing.

o Linear Probing Continue moving away from the current index a set
number of slots (usually one) until a vacant slot is found. This could be
implemented by moving in just one direction or in both directions. While
simple, this method does suffer from more clustering.

o Quadratic probing For less clustering, instead of moving just one slot at
a time, use this sequence of slot-moves: 1, 4, 9, 16, …

A figure of merit:

The load factor for a hash table is defined to be the ratio of the items stored in the table
to the total number of available buckets. To minimize collisions the ratio should be low.
However, a low load factor is wasteful of memory, so like most things, a compromise
must be struck.

Implementing a hash function:

Suppose that we have two parallel arrays that will serve as the repository for a hash table.
Let’s assume that keys are encoded dates from the date-battle example of Table 57-6.

57-6

Using an integer representation of those dates, pass them to the following hash function
and observe the returned indices. Notice the method assumes there are 75 table slots and
uses the modulus operator to calculate the returned index.

public static int hashCode(int key)
{
 final int TABLE_SIZE = 75;
 return key % TABLE_SIZE;
}

The hashCode method makes no attempt to resolve collisions; it just creates a
“suggested” index. It is up to the code that receives this index to resolve any collisions
that might occur.

Project… A Taste of Hash
Create a project called HashTest, and in the main method of a Tester class printout the indices
returned by the hashCode method above. For test data, use the values in the Index 1 column of
Table 57-6. Notice the distribution of returned indices over the permitted range of 0 to 74.

You printout should appear as follows where the distribution from 0 to 74 looks reasonable:

17761103>>>53
17761215>>>15
17770321>>>46
18120518>>>68
18120725>>>50
18610422>>>72
18620124>>>24
18631023>>>48

Project… Hashing Abraham Lincoln
Create a project called HashingAbe with a main method inside a Tester class. The project should
also have a static method called hashCode to which you can pass a key (a String) as a parameter.
As usual, the method should return an index of type int. Use the following “rule” for hashing the
String.
 Create int keyInt consisting of the following calculations:

• First, convert String key to all uppercase.
• The ASCII code of the first character of key times 1000, plus
• the ASCII code of the second character of key times 100, plus
• the ASCII code of the next to last character of key times 10, plus
• the ASCII code of the last character of key.

The hashCode method should assume a table size of 180. The returned int type that is to be used
for the index of a hash table will be keyInt % TABLE_SIZE.

57-7

In the main method test the four names from Table 57-5. The resulting printout from main
should be as follows:

Bush, George>>>39
Clinton, Bill>>>16
Lincoln, Abraham>>>147
Washington, George>>>139

**

The Object class hashCode method:

If the key for your hash table is an object, recall that it inherits the Object class (the
cosmic superclass) and thus inherits four important methods:

Signature Description
String toString() Returns a String hex representation of the object.

For example, for a BankAccount object we get
something like BankAccount@1a28362.

boolean equals(Object o) Tests for the equality of objects.This tests to see
if two variables are references to the same object.
It does not test the contents of the two objects.

Object clone() Produces a copy of an object. This method is not
simple to use and there are several pitfalls.

int hashCode() Returns a decimal int from the entire int range.
 Table 57-7

This last method is of particular interest to us here. Since the int i it produces can lie
anywhere in the range Integer.MIN_VALUE <= i <= Integer.MAX_VALUE you will
still need to calculate modulo TABLE_SIZE to produce an integer suitable as an index for
your hash table. Many programmers do not consider this hashCode method of the Object
class to be a very good hash function since it bases its returned integer on the position in
memory at which the object resides. Many programmers prefer to override the cosmic
superclass hashCode method with one of their own that is more closely tuned to the
requirements of the particular class it represents.

Miscellaneous facts about hash tables:
• Big O value for data storage or retrieval is O(1).
• Hash tables are relatively difficult and slow to traverse in order with respect to the keys

or values.
• The HashSet and HashMap classes both use hash tables. Objects stored in these

structures are not required to be Comparable or have a Comparator. Rather, many
programmers like to provide custom hashCode functions for their classes instead of using
the one inherited from Object.

• The String, Double, and Integer classes all have their own hashCode methods that are
considered quite good.

Special hashCode examples:

• obj.hashCode() returns 57 where obj is the wrapper class Integer, 57
• obj.hashCode() returns the ASCII code for A(65) where obj is either “A” or wrapper ‘A’

57-8

Exercise for Lesson 57

1. In either a lookup or hash table a key is used to lookup a what?

2. A very complicated mathematical function of x needs to be computed for integer values

of x ranging from 0 to 100. Would this problem be a better candidate for a lookup table or
a hash table?

3. If we have a choice which is better to use, a lookup table or a hash table? Why?

4. Define “load factor” as it is used with regard to hash tables.

5. If plenty of memory is available, which is most desirable, a small load factor or a large
load factor?

6. What is a disadvantage of a small load factor?

7. What is the largest possible value for a load factor?

8. If the hashCode method inherited from the cosmic superclass is used, what range of

integers does it generate?

9. Suppose int j represents a range of integers from 173 to 5847. Write a simple hashCode

function (method) that will receive j, convert it into a range of indices suitable for
addressing an array of length 75, and then return this value.

10. With regard to hashing, what is a collision?

11. What are the two general ways of handling collisions?

12. What are the two types of probing discussed in this lesson? Which is more prone to
clustering?

13. Is clustering good or bad in a hash table?

57-9
14. What is the term we use to measure the quality (with regard to the possibility of

collisions) of hash table?

15. In a lookup table is it possible for several keys to map to one index?

16. In a hash table is it possible for several keys to map to one index?

17. What do we call the condition of a key mapping to more than one index?

For problems 18-20 consider the following distribution of indices generated by a hash function.
The permitted range of indices is 0–100 and each index in the list was generated by a different
key.

{1, 6, 18, 18, 19, 36, 38, 39, 40, 41, 41, 42, 59, 61}

18. Do you see evidence of any clustering and if so, where?

19. Other than some possible clustering, does the distribution seem fairly even?

20. Do you see evidence of any collisions and if so, where?

21. In both lookup and hash tables, which of the following is true?
a. Keys are used to locate values
b. Values are used to locate keys

22. What are some chaining data structures that could be used?

23. An array of length len is used to store a hash table. How many buckets are there in this

hash table?

24. What is the Big O value for storage of data in a hash table if there are no collisions?

25. Is it easy to traverse a hash table in ascending order of the keys?

26. What is printed by the following?
Integer i = 4;
System.out.println(i.hashcode() + “B”.hashCode());

57-10

Lookup and Hash Tables… Contest Type Problems

1. What code replaces <#1> in the hash
code method to the right?

A. int
B. long
C. double
D. String
E. None of these

2. Assuming that <#1> has been filled in
properly in the code to the right, which of
the following would be an appropriate
replacement code for <#2>?

A. key % table_len
B. table_len % key
C. keyInt % table_len
D. table_len % keyInt
E. None of these

3. Assuming that <#1> and <#2> have been
filled in correctly and if the method to the
right is called with the following code, what
is returned?

hashCode(“AB”)

A. throws an exception
B. 816
C. 7227
D. “AB”
E. None of these

4. Assuming that <#1> and <#2> have been
filled in correctly and if the method to the
right is called with the following code, what
is returned?

ilds = hashCode(“ABC”);

A. throws an exception
B. 816
C. 7227
D. “ABC”
E. None of these

public static <# 1> hashCode(String key, int table_len)
{

int keyInt = 0;
for(int j = 0; j<=2; j++)
{

keyInt = 10*keyInt + key.charAt[j];
}
return <#2>;

}

57-11

5. If the code to the right is part of a probing
function used for resolving collisions in a hash
table, which type of probing is most likely
being done?

A. Bucket
B. Chaining
C. Linear
D. Quadratic
E. None of these

indxSeed = 1;
boolean foundIt = true;
while(foundIt) {

indx = indxSeed * indxSeed;
indxSeed++;
if(key = = keyArray[indx])
{

foundIt = false;
}

}

6. Suppose a hash function is observed to be very slow. Which of the following might be a cause
of this?

 A. A low load factor B. A high load factor C. A slow method of chaining
 D. The hash function doesn’t produce an even distribution E. More than one of these

7. Which of the following is true about hash tables?

A. Makes efficient use of memory D. Is useful in sorting
B. Is fast in the storage and retrieval of data E. None of these
C. Makes ordered traversals of the data easy

8. The function g = 3X (where x is restricted to the values 4, 5, 6, 7, and 8) would be a most
appropriate candidate for use in which of the following?

 A. Hash table B. Lookup table C. LinkedList D. ArrayList E. None of these

9. Using the code to the right, what is the
output of the following client code?

 HashTbl ht = new HashTbl();
 ht.add(51);
 ht.add(20);
 ht.add(‘A’);
 ht.add(‘B’);
 System.out.println(ht.retrieve(2));
 System.out.println(ht.retrieve(5));

 A. [51, 20]
 [A, B]
 B. []
 [20, A]
 C .[]
 []
 D. Throws an exception
 E. None of these

import java.util.*;
public class HashTbl {

public HashTbl() {
 for(int j = 0; j < SIZE; j++)

bucket[j] = new LinkedList();
}

public linkedList retrieve(int indx) {

 return bucket[indx];
}

public void add(Object obj) {
 int hc = obj.hashCode()% SIZE;
 bucket[hc].add(obj);
}

private final int SIZE = 15;
private LinkedList bucket[] = new
 LinkedList[SIZE];

}

Case Study

Distance to a Meandering Trail

CS1-1
Case Study… Distance to a Meandering Trail

Consider the following trail that is the result of connecting a sequence of twelve trail-points. It is
our job to determine the nearest distances from some arbitrary test-points to the trail. Four
such test-points are shown; they are labeled A, B, C, and D. The dashed lines indicate the nearest
distance from each of these points over to the trail.

Fig. CS

We wi
contain

. . .

.

(-6.5, -7)

(-7, -5)

) (-3, 3.5)

(-2.2, 4)

(-1, 3

(1, -1)

Y

(7, -5

 5)

(-3, -1)
(7, -.5)

(7, 5.1
.

.

.

1-1

ll begin by creating two text fil
 the sequence of 12 points as f

(-6.5, -7)
(-7, -5)
(-7, -1)
(-6, 3)
(-3, 3.5)
(-2.2, 4)
(-1, 3)
(1, -1)
(3, -6.5)
(5, -7)
(7, -5)
(6, -.5)
.)
es. The firs
ollows. (Be
.

t file will be named Tr
 sure to enter parenthe
.

ailData.in
sis and com
.)
.)
 (-7, -1)
(-6, 3
(3, -6.5)

(5, -7)
(6, -.5
and
m

X

* A
(-1.5,
B *

* D
* C)
 will
as.)

CS1-2

The second text file will be called TestData.in and will contain data exactly as shown by the
following (notice a space following the letters):

A (-1.5, 5)
B (-3, -1)
C (7, 5.1)
D (7, -.5)

The final output of this program will be:

Test point A distance to trail >>> 1.2206555604934692
Test point B distance to trail >>> 3.5777087211608887
Test point C distance to trail >>> 5.68858528137207
Test point D distance to trail >>> 0.9761870503425598

**

This is a fairly long, sophisticated project and the secret to success is not to bite off too much at
once. Do a small, fundamental part of the code, test it, and revise as necessary. Then do a little
more, test, and get that part working too. This will be our approach here.

The first thing we must do is create a project. Let’s call our project DistToTrail and have it
include a class called Tester. To make things go a little faster, we will paste in the contents of the
BaseClass class developed in Lesson 27 and use that code to input the TrailData.in file. After
creating two arrays, double trailX[] and trailY[] (both dimensioned to a length of 12), strip off
the parenthesis and commas and store the x coordinates in trailX[]. Similarly, store the y
coordinates in trailY[]. Use the following temporary code for testing:

for(int j = 0; j < 12; j++)
{
 System.out.println(trailX[j] + “, ” + trailY[j] + “ ”);
}
System.out.println(“”);

The output of this test should look like this:

-6.5, -7.0
-7.0, -5.0
-7.0, -3.0
-6.0, 3.0
-3.0, 3.5
-2.2, 4.0
-1.0, 3.0
1.0, -1.0
3.0, -6.5
5.0, -7.0
7.0, -5.0
6.0, -0.5

CS1-3

The code for the project up to this point (and including the above test) can be found in the Blue
Pelican Java Answer Book in the Case Study section titled “Part 1”.

So far, so good. Next, we will bring in the TestData.in file and store its parts in three different
arrays. Remove the previous test code and add new code to main that will create the following
arrays with each dimensioned to a length of 4: char testLetter[], double testX[], double
testY[].

Now write code that will bring in this file and separate the parts of each line of text and store
each in one of the new arrays just created. Use the following test code to verify that this section
of the code is working:

for(int j = 0; j < 4; j++)
{
 System.out.println(testLetter[j] + “ ” + testX[j] + “, ” + testY[j]);
}
System.out.println(“”);

The output of this test should appear as follows:

A -1.5, 5.0
B -3.0, -1.0
C 7.0, 5.1
D 7.0, -0.5

The code for the project up to this point (including the test just above) can be found in the Blue
Pelican Java Answer Book in the section titled “Part 2”.

**

Now we come to the major part of the code for this project. This code will go in another class
called LineStuff. Briefly, the LineStuff class can be described by the following list. At this point,
do not try to implement any of this. Just scan the list and become somewhat familiar with the
methods and state variables. Implementation will come later, step-by-step.

1. A constructor receives four double parameters that represent the coordinates of the two
end points of a line segment.

a. These four parameters are assigned to the double state variables segX1, segY1,

segX2, and segY2.

b. Use the coordinates of the end points of the line segment to determine the

equation of the line in Ax + By + C = 0 form.
i. Be sure to handle the special case in which the line is vertical.

ii. Store A, B, and C in state variables of the same name.

2. Method public double distToLine(double tpX, double tpY)

CS1-4

a. The parameters tpX and tpY represent the coordinates of a test-point not
necessarily on our line.

b. Return the distance from the point (tpX, tpY) to the line described by Ax + By + C
= 0. This involves the use of a formula from Analytic Geometry that will be
presented a little later.

3. Method public boolean onSegment(double tpX, double tpY)

a. This method tests to see if the perpendicular projection of (tpX, tpY) onto line Ax
+ By + C = 0 falls on the segment defined by (segX1, segY1), (segX2, segY2).

b. Returns true if on the segment.
c. Returns false if not on the segment.

This analysis is somewhat complicated and will be explored later.

4. Create the following public double state variables:

segX1, segY1, segX2, segY2, A, B, C

Constructor and State Variables
Ok, time to get busy and start building the LineStuff class. In your project, create the skeleton of
the LineStuff class.

Create the double state variables segX1, segY1, segX2, segY2, A, B, and C.

Next, create part of the constructor and assign the parameters to the state variables segX1, segY1,
segX2, and segY2.

In the Answer Book this code is labeled as “Part 3”.

Your next task is to finish the constructor by using the parameters to generate the equation of the
line, thus producing A, B, and C. Be very careful here. You should not immediately calculate the
slope of the line because it may be infinite. Instead, find out first if it is infinite by testing the
denominator of the slope formula (m = (y2 - y1)/(x2 - x1)). This test is:

 if((x2 – x1) = = 0)

In fact, we can get in trouble if the difference between x1 and x2 is very, very small, but still
nonzero. It is suggested that you use the following test instead:

 if(Math.abs(x2-x1) < .000000001)

Some IDE’s like BlueJ will let your directly test your class without having to create test code in
main of the Tester class. The table below shows the final values of A, B, and C after passing the
test parameters x1, y1, x2, and y2 to the constructor. If your IDE does not permit such testing,
you will need to hard code these tests into main of the Tester class.

CS1-5

Test Values Results
x1 y1 x2 y2 A B C
8 -7.2 8 19.5 1 0.0 -8.0
-2.44 4.902 16.3 -187.511 10.267502… 1.0 20.1507091…
-42 -19.1 17.03 -19.1 0.0 1.0 19.1000003…

Table CS1-1

The full code for the constructor and state variables for LineStuff is labeled as “Part 4” in the
Answer Book.

distToLine method
Implement the distToLine method as previously described. Use the following formula to
determine the distance from the test-point (tpX, tpY) to the line Ax + By + C = 0:

Dist = | A(tpX) + B(tpY) + C | ÷ √ A2 + B2

Test the distToLine method by creating a LineStu
constructor and verify that you get the expected r

Arguments Sent to Constructor
Point #1 Point #2

x y x y
-1 3 1 -1
7 -5 6 -.5
-7 -5 -7 -1

Table CS1-2

In the Answer Book the full implementation of t

.(tpX, tpY)

Ax + By + C = 0
Fig. CS1-2 Distance from a point to a line
ff o
esu

his m
Dist
bject. Send the arguments below to the
lts back from the distToLine method.

Test-Point distToLine

x y double
-3 -1 3.57708721…
7 5.1 2.19099736…
-3 -1 4.0

ethod is labeled “Part 5”.

CS1-6
onSegment method
When projecting a test-point over to a line,
there are two distinct cases. First, consider the
scenario to the right in which a test-point
projects over to a line and falls in the interior
of the segment originally defining the line. In
this case, the point of projection is on the
segment and the onSegment method should
return a true.

 Second, the test-point projects
as to fall outside the line segm
defining the line. An example o
found in the drawing to the left
method should return a false.

How can we distinguish betwee
situations? This is accomplishe
the three distances between th
the line.

Let’s examine these distances for the case when the point of projection falls on
Fig CS1-5 shows three distances. The relative sizes of these distances will be u
the point of projection does, indeed, fall on the line segment.

 Fig. CS1-5 Point of projection falls in the interior of the line segmen

From Fig. CS1-5 we see that the condition for the point of projection to fall in t
line segment is for d1p and d2p to both be less than or equal to d12. This woul
onSegment method returning a true.

You will need to calculate the distances d1p, d2p, and d12. Use the following d
calculate, for example, the distance between (x1, y1) and (x2, y2).

 dist = √(x2 – x1)2 + (y2 – y1)2

(segX1, segY)

(tpX, tpY

.

(segX1, segY1)

(segX2, segY2)

. (tpX, tpY)

.

.

.
(segX1, segY1)

(segX2, seg.

(tpX, tpY)

(projX, projY)

d1p d2p

d12
.

(segX2, segY2)
.1

.)
over to the line so
ent originally
.
Fig. CS1-3 Projection on the segment
f this scenario is
. The onSegment

n these two
d by comparing
e three points on
Fig. CS1-4 Projection not on the line
Point of projection
(projX, projY)
Point of projection
(projX, projY)
 the line segment.
sed to verify that

t.

he interior of a
d result in the

istance formula to

Y2)

CS1-7

Now lets examine the case when the point of projection falls outside the line segment originally
defining the line.

 Fig CS1-6 Point of projection falls on the exterior of the line segment.

From Fig. CS1-6 we see that the condition for the point of projection to fall on the exterior of
the line segment is for either d1p or d2p to be greater than d12. This would result in the
onSegment method returning a false.

This is all well and good; however, there is still one major obstacle. How do we find the point of
projection (projX, projY)? Very succinctly, here is how it’s done. In Fig CS1-7 we note that the
two lines labeled line1 and line2 are perpendicular (their slopes are negative reciprocals of each
other). That will help us obtain the equation of line1. The equation for line2 is already known;
using the state variables A, B, and C, it is Ax + By + C = 0.

Fig CS1-7 line1 a

After finding the equation
desired intersection point

Assuming that the
are:

∆ = A1(B)
x = [-C1(B
y = [-C(A

The solution here,

Following is a flow chart

. .
(segX1, segY1)

(segX2, segY2)
.

(projX, projY)

d1p

d2pd12

.
(segX2, segY2)

(tpX, tpY) .

(projX, projY)
.
e
nd line2 are solved simultaneou

 of line1, solve the two lines si
 (projX, projY):

 equation of line1 is of the form

 – A(B1)
) + B1(C)] / ∆

1) + A(C1)] / ∆

 (x, y), is the desired intersectio

that should prove useful in putt

(segX1, segY1)
.

sly to find the point o

multaneously as follow

 (A1)x + (B1)y + C1

n point (projX, projY).

ing all these ideas toge
. (tpX, tpY)
line1
lin 2
f projection

s to find the

= 0, the solutions

ther.

CS1-8

 Fig. CS1-8 onSegment flowchart

Test the onSegment method by creating a LineStuff object. Send the arguments below to the
constructor and verify that you get the expected result back from the onSegment method.

Arguments Sent to Constructor
Point #1 Point #2

Test-Point onSegment

x y x y x y boolean
-1 3 1 -1 -3 -1 true
7 -5 6 -.5 7 5.1 false
-7 -5 -7 -1 -3 -1 true

Table CS1-3

In the Answer Book the full implementation of the onSegment method is labeled “Part6”.

**
After having accomplished all of the above, the LineStuff class is complete. Next, we turn our
attention to the Tester class. The additional code to be placed there looks at each test-point and
determines the nearest point on the trail. The nearest point may either be the distance of a
perpendicular projection onto the trail or the distance to a trail-point. In Fig CS1-1 test-point A is
nearest a trail-point while test-point B is nearest a perpendicular projection onto the trail. For
each test-point, both types of distances must be considered. Use the following to assist you in
writing the code that determines the nearest place on the trail for each test-point.

1. A loop will cycle through the four test-points. The remaining items listed below will all
be placed inside this loop.

2. Cycle through all eleven line segments (determined by the twelve trail-points) and

determine the point of projection of the test-point onto each line defined by these
segments.

3. Determine if the point of projection is on the segment (use onSegment). If it is, then get

the distance to the line using distToLine and store the returned distance in the double
dist[] array. Increment an integer counter, distArrayCounter, as each new distance is
stored there. In the end it will finally become the length of this array.

Use A and B to determine
the slope, m, of line1.

Use m and (tpX, tpY) to
determine the equation of
line1. A1x + B1y + C1 = 0

Solve A1x + B1y + C1 = 0
and Ax + By + C = 0
to get (projX, projY).

Using (projX, projY),
(segX1,segY1), & (segX2,
segY2) find d12, d1p, & d2p

Compare d12, d1p, and
d2p to determine if (projX,
projY) is on the segment.

CS1-9

4. Cycle through all twelve trail-points and determine the distance from the test-point to
each. Store each of these distances in the dist[] array and increment distArrayCounter
each time.

5. Sort the dist[] array.

6. The first item in the array is the desired shortest distance.

7. Produce output for each iteration of the loop described by item 1 above. The final output

should appear as follows:

Test point A distance to trail >>> 1.2206555604934692
Test point B distance to trail >>> 3.5777087211608887
Test point C distance to trail >>> 5.68858528137207
Test point D distance to trail >>> 0.9761870503425598

The implementation of the code for the above seven steps is labeled in the Answer Book as
“Part 7”. Following that is the complete code for the Tester class.

On the next page is a flow chart that is the equivalent of the above seven steps:

Following is a practical application of a project such as this:

In GIS (Geographical Information System) software there might be a trail of points
representing a road or perhaps a pipeline. As a mouse pointer is moved across a map
containing such a trail, we could repeatedly call a method implementing the ideas of this
project to continuously show the distance from the mouse pointer to the trail.

CS1-10

 Fig. CS1-9 Flow chart for

Get next test-point

Get next segment

Get projection of
test-point on seg.

Proj on
Segment

?

Finished
with all
segs.?

Get dist of test-point to line

Store distance in dist[]

Increment distCounter

Get next trail-pt

Get dist of trail-
point to test-point

Fill dist[] with
large numbers
Store in dist[] and
increment

distCounter
 determining

Finished with
trail-points?

Finished wit
test-points?

end

yes
yes

Sort dist[] array

h

Get distance in index 0 of
array

Use it to produce printout
yes
 n
yes
no
no
no
no
Set distCounter = 0
earest point.

charles.cook
Text Box
This page intentionally left blank.

Golden Nuggets of Wisdom

(Short Learning Activities)

Study one of these each day (followed by a quiz on the following day) during the six
weeks preceding a contest to help sharpen your Java skills.

Nug01-1

Golden Nugget of Wisdom # 1

In each problem below, state what’s printed.

1. for(int j = 0; j < 5; j++)
{
 …
}
System.out.println(j); //???
Won’t compile. The scope of j is confined to the loop. It’s not recognized
outside the loop.

2. int j = 19;
for(j = 0; j < 5; j++)
{
 …
}
System.out.println(j); //???
Prints 5. On the last iteration of the loop j is incremented to 5 but this doesn’t
satisfy the loop condition, j < 5, so the loop is exited…however, j is still 5 and
that’s what’s printed.

3. for(int j = 0; j < 5; j++)
{
 int k = 10;
}
System.out.println(k); //???
Won’t compile. The scope of k is limited to the loop; therefore, k is not
recognized outside the loop.

4. What are two other names for instance fields?

State Variables and Data Members

Nug02-1

Golden Nugget of Wisdom # 2

public class Bystander
{
 public void method1(int x){ }
 public void macho(int x, String s){ }
 public void macho(int x, int y){ }
}

public class Parent
{
 public void method2(){…….}
}

public class Child extends Parent
{
 public void method1(int x){ }
 public void method2(){…….}
}

1. Name two methods that represent overriding.

method2…in both the Parent and Child classes. Objects made with the
Child class will use its method2 in preference to method2 in the Parent
class.

2. Name two methods that represent overloading.
The two macho methods in the Bystander class

3. Name two methods that represent polymorphism.
method1…in both the Bystander and Child classes. They have nothing
to do with each other…totally unrelated.

Nug03-1

Golden Nuggets of Wisdom # 3

1. What does it mean when it is said that some class realizes an interface?

Answer: It simply means that this particular class implements the interface.

2. Consider the following usage of the split method:

 String lickety = "abcd123efgh456";
 String sp[] = lickety.split("\\d+");
 System.out.println(sp.length + sp[1]); //2efgh

Note that while “\\d+” is a regular expression indicating one or more digits there
is a different meaning to “\\D+”. It is left to the reader to explore this and other
similar regular expression in Appendix AC.

In the example above there are only two elements of sp. They are:

 sp[0] = “abcd” and sp[1] = “efgh”

3. System.out.println(18 ^ 10); // Prints 24…exclusive oring

18 = 1 0 0 1 0
10 = 1 0 1 0
 1 1 0 0 0 = 24

Nug04-1

Golden Nugget of Wisdom # 4

1. String s = “Hello”;
System.out.println(s.substring(4,5));

H e l l o
0 1 2 3 4

Notice the highest index is 4, yet we have an index of 5 in the code above!
Actually, this is legal because the meaning of the second parameter (5 in this
case) is to “pull back” one notch for the last character of the substring. So, the
println above would legally print an “o”.

It would be easier to pick-off the last character of s using the one parameter form
of substring, s.substring(4);.

There is a more straight forward way to pick up the last character of a String using
charAt(). If you know the last character’s index, use, for example, s.charAt(4). If
you don’t know how long the String is, use s.charAt(s.length() - 1);.

2. String s = “Hello”;
String ss = s.substring(3,3)
System.out.println(ss); //prints nothing
System.out.println(ss.length()); //0
ss = s.substring(3,2); // StringIndexOutOfBoundsException

3. Returning an array from a method:

The following method will return an int array.

 public int [] myMethod()
 {
 int ss[] = {1,2,3,4};
 return ss;

}

 Call this method as follows:

 int bb[] = myMethod();

Nug05-1

Golden Nugget of Wisdom # 5

Masking:
Consider the integer 93. In binary it is written as:
 93dec = 1 0 1 1 1 0 1
bit “positions” 6 5 4 3 2 1 0

Now, suppose we are interested in bit position number 3. What is it? From above we see
that it’s 1. Similarly, bit position 5 is a 0. How can we programmatically determine the
value of various bit positions? We do this by masking.
 93dec = 1 0 1 1 1 0 1
 mask = 0 0 0 1 0 0 0 = 8dec = 23 …all except bit position 3 are masked.
 0 0 0 1 0 0 0 result of bitwise AND

Notice with the bitwise AND with this particular mask that we are guaranteed all 0’s in
the answer except in bit position 3. In that position the bit will be the same as that of the
number with which the mask is bitwise AND-ed.

The following code will identify the bit values in any desired position:

import java.io.*;
import java.util.*;
public class Masking
{
 public static void main(String [] args)
 {

 Scanner reader = new Scanner(System.in);

 System.out.print("Enter an integer value. ");
 int x = reader.nextInt();

 System.out.print("What bit position in the integer entered above do you wish

to read? ");
 int p = reader.nextInt();

 int m = (int)Math.round(Math.pow(2, p)); //create the mask
 int a = x & m;
 if(a= =0)
 {
 System.out.println("Bit position " + p + " is a 0.");
 }
 else
 {
 System.out.println("Bit position " + p + " is a 1.");
 }

 }
}
In the line of code above, where we create the mask we can’t trust Math.pow() alone
because of round-off errors. This is why we use the round() method. Since it returns
a double, we must cast the entire thing to an int type.

Nug06-1

Golden Nugget of Wisdom # 6

1. Illegal method calls:

public interface Country
{
 int method1(double d);
}

public class State implements Country
{
 public int method1(double d)
 {
 … some code …

}

public void method2(int x)
{

 … some code …
}

}

Country obj1 = new State(); // Notice Country is the interface and State is the
 // implementing class

obj1.method1(38.2); //Legal because obj1 is a Country object and method1 is a
 //method specified in Country

obj1.method2(3); //Illegal because obj1 is a Country object and method2 is not
 //a method specified in Country

2. Converting a decimal number to a binary, hex or octal string:

int j = 17;
System.out.println(Integer.toBinaryString(j)); // 10001
System.out.println(Integer.toHexString(j)); // 11
System.out.println(Integer.toOctalString(j)); // 21

The last three lines of code could, instead, be done this way:

System.out.println(Integer.toString(j, 2));
System.out.println(Integer.toString(j, 16));
System.out.println(Integer.toString(j, 8));

Nug07-1

Golden Nuggets of Wisdom # 7

1. StringBuffer s = new StringBuffer("Yikes");
s.insert(3, "YES");
System.out.println(s); //prints YikYESes
 // Notice it inserts just before index 3

2. String s1 = "A";
String s2 = "a";
System.out.println(s1.compareTo(s2));. //prints a negative number

Notice that “A” alphabetically precedes “a.” Alphabetical sequence is
determined by the ASCII codes. ASCII code for “A” is 65 and it's 97 for “a.”
Since 65 < 97, that is why “A” < “a” in an “alphabetical” sense.

3. String s1 = "B";
String s2 = "a";
System.out.println(s1.compareTo(s2));.
//prints a negative number since “B” alphabetically precedes “a”. (ASCII
//code for “B” is 66 and for “a” is 97; hence “B” < “a”.)

4. int x = 8;
double y = 2.3
String s = “hello”;
System.out.println(x + y + s + x + y); // prints 10.3hello82.3
Moving from left to right, we encounter regular addition so we get 10.3. Next,
we encounter a String, so we go into the concatenation mode and get
“10.3hello”. We are now in a String mode, so the remaining “+”’s are
concatenations… and we get “10.3hello82.3”.

Nug08-1

Golden Nuggets of Wisdom # 8

1. Escape characters: \” \\ \n \’ \t
System.out.println("Path:\tC:\\NerdStuff\nFile:\t\"nerd.doc\"\nH\'e\'llo");
 Prints the following:

Path: C:\NerdStuff
File: "nerd.doc"
H'e'llo

2. Use of null:
Suppose acc is some object that has not yet been initialized. Is the following
parenthesis true or false?
if(acc = = null) true
{

 }

3. Use of continue:
while(…some condition …)
{
 …some code…
 continue;
 … some more code …
 jumps to here and we continue to loop
}

4. An unusual use of break:

YourDogsName: //this is a label that designates the outer loop…notice the colon
while (…outer loop condition…)
{
 while (…inner loop condition…)
 {
 if (…something really bad happens…)
 {
 break YourDogsName; // Just as a plain “break” would

 //break out of the inner loop. This
 //breaks out of the outer loop.

 }
 }
}

Nug09-1

Golden Nuggets of Wisdom # 9

1. m = (…some Boolean expression…) ? (…set m to this if true…) : (…set m to this if false…);

if(…some Boolean expression…) // The above can be rewritten like this
{
 m = something;
}
else
{
 m = something else;
}

2. Bitwise not…. ~13 gives a weird negative number

 13decimal = 0 0 …….0 0 1 1 0 1 binary
 |
 sign bit, 0 means its positive

 ~13decimal = 1 1 …….1 1 0 0 1 1 binary

 |
 sign bit, 1 means its negative

3. Shifting
 12 << 3 ….gives 96…12 * 23 …..sign is preserved
-12 << 3 ….gives -96…12 * 23 …..sign is preserved
 16 >> 3 ….gives 2…..16 / 23 …..sign is preserved
-16 >> 3 ….gives -2…..16 / 23 …..sign is preserved
-16 >>> 3 ….gives 536870910 …..sign is not preserved

4. Modulus with fractions
5.1%3 returns a 2.1…3 divides into 5.1, one time. Then subtract 5.1 – 3
and get 2.1.

Nug10-1

Golden Nuggets of Wisdom # 10

1. Constants….. (final)

public class BankAccount
{
 public BankAccount()
 {
 balance = 5; //Ok to initialize it here in the constructor
 }

 public void aMethod()
 {
 balance = 5; //Not legal
 }

 public final int balance; //Notice the constant is not initialized here as we
 //would normally do.

}

2. System.arraycopy(a, aStartIndex, b, bStartIndex, howManyToCopy);
a is an array……..b is an array
“From me to you” ….copies from a to b.

3. Calling one constructor from another:
public class BankAccount
{
 public BankAccount(double bal)

{
 balance = bal;

}

public BankAccount()
{
 this(4.18); //calls the top constructor
}

}

Nug11-1

Golden Nuggets of Wisdom # 11

1. Bitwise OR-ing and AND-ing symbols can be used with boolean values. They
give exactly the same answers that regular AND-ing and Or-ing do. This is
somewhat strange and the only reason for using them is to effectively Boolean
AND or OR while circumventing short-circuiting…see Nugget 15, items 1 and 2.

boolean a = true, b = false, c = true, d = false;

(a && c) returns true…….(a & c) returns true

(a && b) returns false…….(a & b) returns false

(a || c) returns true…….(a | c) returns true

(a || b) returns true…….(a | b) returns true

etc….

2. x * =y + z;
…means x = x * (y+z); //y+z must be in parenthesis.

3. int x = -5;
int y = 9;
System.out.println(x % y);
 -5

What about when the signs are mixed? -5 % (-9) -5 %9 5 % (-9)
For the problem a%b, the sign of the answer will always be the sign of a. The
sign of b is totally ignored.

4. FIFO…..first-in-first-out….classic example is a queue of people waiting to buy
tickets in front of a box-office. The first person in line (First In) will be the first
one to buy tickets and get out (First Out).

LIFO…….last-in-first-out……classic example is a stack. The last thing we push
on the stack (Last In) will be the first thing we pop (sometimes called pull) off
the stack (First Out).

Nug12-1

Golden Nuggets of Wisdom # 12

1. int x = 5;
int y = 2;
double d = (double)(x/y);
System.out.println(d); // prints 2.0

The parenthesis around x/y creates a little “world of its own” and
since x and y are both integers, integer arithmetic is done giving 2.0
(not 2.5). This answer is then cast into a double.

2. int x = 5;
int y = 2;
double d = (double)x/y;
System.out.println(d); // prints 2.5

Only

 the x is cast as a double. x/y is now done with double arithmetic
since x has been cast as a double.

3. Integer X = 5; //pre Java 5.0, Integer X = new Integer(5);

BankAccount myAccount = new BankAccount(5);
if (X = = myAccount)
{

}
Is the parenthesis true or false, or will this not even compile?

It won’t compile because these two objects are incompatible for
comparison.

4. Access Control….also called Access Control Modifier. These specify the

accessibility of state variables, methods, and classes:

a. public …accessible from anywhere.

b. private …accessible from just within its own class. Note that a private
item (state variable or method) in an instance of a class is accessible from
within another instance of that same class.

c. Package …all methods of classes in the same package can access the

feature. This is the default access control if none is specified. It is illegal
to actually write Package; however, in the absence of an Access Control
Modifier, Package is assumed.

d. protected …access is permitted by methods of the same class, subclasses,

and classes in the same package.

Nug13-1

Golden Nuggets of Wisdom # 13

1. Consider the running time (Big O) for the following code:

for (int j = 0; j < p; j+=20) //O(p / 20)…drop the constant factor to get O(p)
{
 for(int k = 0; k < q; k*=4) //O(log4q)… drop the base 4 to get O(log q)
 {
 . . .
 }
}
Since one loop is nested in the other, we multiply…O(p log(q)). Notice that we drop the
base 4 on the log and just call it log. This is because the log of any base is directly
proportional to the log of any other base.

2. Is there any difference in the following expressions?
5 / 3 * 4.1 and 5 * 4.1 / 3

 With pencil & paper there is no difference.

On the computer however, if 5 / 3 is done first (as in the left example above), both are
integers, so the answer to that part is obtained with integer arithmetic and will be 1….this
corrupts everything else after that. On the other hand, if 5 * 4.1 is done first (as in the
right-hand example above), then the compiler sees the 4.1 and does double arithmetic. Of
course, the rest of the calculation will be as it would be with pencil and paper.

3. How do we declare an array of objects? Let’s consider the BankAccount class.

BankAccount theAccounts[] = new BankAccount[500]; //Creates 500 objects;
 //however, they are each null

theAccounts[17] = new BankAccount(205); //Initializes 17th account to have $205

Likewise, each of the remaining 499 accounts must be initialized separately.

Nug14-1

Golden Nuggets of Wisdom # 14

1. All objects inherit the cosmic superclass equals method. With this method, variables are
compared to see if they reference the same object. Some standard classes (like String and the
wrapper classes) override equals and implement their own so as to compare object contents.
(If you create objects from your own class, and if you want the equals method, you will have
to specifically put it in your class.)

Integer i = 23; //pre Java 5.0, Integer i = new Integer(23);
Integer j = 23; //pre Java 5.0, Integer j = new Integer(23);
Integer k = j;
System.out.println(i.equals(j)); //true
System.out.println(i = = j); //false,… they are different objects.
System.out.println(k = = j); //true,…. they are references to the same object.

Integer i = 23; //pre Java 5.0, Integer i = new Integer(23);
Double j = 23; //pre Java 5.0, Double j = new Double(23);
System.out.println(i.equals(j)); //false

Please note that for i.equals(j) to be true, both i and j must be of the same object
type….and furthermore must have the same values.

System.out.println(i.equals(j)); //will compile as long as i and j are both objects
 //If they are different object types it will still
 //compile but will be false.

2. Consider the relationships between decimal, hex, and binary

Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F
Bin 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

Now let’s think of the exclusive or problem 0x4BA ^ 0x132

Let’s break up each into its binary form.

 0x4BA = 0100 1011 1010 0x132 = 0001 0011 0010
 4 B A 1 3 2

Stack them and do an exclusive or remembering that two 1’s yields a 0.

0x4BA = 0100 1011 1010
 0x132 = 0001 0011 0010

 0101 1000 1000 = 0x588, the answer
 5 8 8

Nug15-1

Golden Nuggets of Wisdom # 15

1. int j = 3;
int k = 5;
int count = 0;
if ((j = = k) && (count++ < 59))
{ . . . }

 System.out.println(count);

Prints 0…Since (j = = k) evaluates false, the entire “if()” is doomed to come out
false, regardless of whether (count++ < 59) is true or false. “Short circuiting” just
skips the second parenthesis to save time; therefore, the increment on count is
never done.

2. Here’s a case in which short-circuiting does not take place. Back in Nugget 11, item 1
we explored using bitwise AND-ing and OR-ing symbols with boolean quantities.
Suppose as in #1 above we similarly have:

int j = 3;
int k = 5;
int count = 0;
if ((j = = k) & (count++ < 59))
{ . . . }
System.out.println(count); //Prints 1 since there is no short circuiting using &.

3. How do we convert a double or an int type variable into a String?
String m = String.valueOf(15.302); //Works on doubles.
String n = String.valueOf(18); //Works on integers.
String p = “” + 15.302; //Concatenation is probably the simplest way.

4. Use extends when we wish one class to inherit another. Use implements when we wish

one class to have all the methods listed in an interface. The following example
illustrates the School class inheriting the District superclass. School also implements
both the TextBook and LunchRoom interfaces. Notice the order. The keyword extends
comes first, followed by implements.

public class School extends District implements TextBook, LunchRoom
{
 . . .
}

Only one class can be extended; however, several interfaces can be implemented.

Nug16-1

Golden Nuggets of Wisdom # 16

1. What’s wrong with the following method signature?
public boolean static hoover(int x)

The order should be…… public static boolean hoover(int x). Notice, the type
specifier (boolean in this case) should immediately precede the method
name.

2. String s = “Zorro”;
s = s.replace(‘r’, ‘x’);
System.out.println(s); // Zoxxo … notice it replaces ALL occurrences of r

3. What is the meaning of String [] args in

public static void main(String [] args) ?

If we write it as, String args[], we know that args is a String array.
Furthermore, the array is of length args.length…which means this is the
number of command line arguments.

See page 19-4 to review DOS prompt usage of command line arguments.

4. Using an enhanced for-loop, write code that will find the product of all the integers in
array x (assume x is of type int).

int product = 1;
for(int val:x)

product *= val;

5. What is printed by the following?

double []d = {20.0, 20.1, 20.2, 20.3}
for(double valD: d)
 valD = valD + 1.0;

//The line just above compiles and runs but doesn’t affect the d array.
//This is because enhanced for-loops are “read-only”.

for(double w : d)
 System.out.print(w + “, ”)
 20.0, 20.1, 20.2, 20.3,

Nug17-1

Golden Nugget of Wisdom # 17

1. Consider the overloaded String method indexOf. Following are the signatures of
the several versions:

a. int indexOf(String s)
b. int indexOf(String s, int startingIndex)
c. int indexOf(int ch) //ch is the ASCII code of a desired character
d. int indexOf(int ch, startingIndex)
e. int indexOf(char ch)
f. int indexOf(char ch, startingIndex)

There is a “last” version of each of the above that searches from right to left, for
example:
 int j = myString.lastIndexOf(“Hello”);

2. Different references to the same array:

Because arrays are objects, two or more variables can refer to the same
array as in the following example:

int []frst, sec; // same as int frst[], sec[];
frst = {1, 2, 3, 4, 5};

sec = frst;
sec[2] = 99;
System.out.println(frst[2]); //notice that even though we changed only

 //sec[2] to 99, frst[2] also changes to 99.

3. Suppose that we have a chain of inheritance Tree(superclass), Oak, and Bark with
these respective objects: tr, ok, and brk. In a fourth class called DoStuff there is
method with the signature, public static int method1(Oak oakster). The following
are legal ways to call method1 from within a fifth class: DoStuff.method1(ok);
and DoStuff.method1(brk); . An illegal call would be DoStuff.method1(tr); .

Recall form Lesson 36 that if a method is expecting to receive an object of a
particular type, that it is legal to only send an object of equal or lower (on the
inheritance and/or interface chain) type.

4. Boolean operators have the following order of precedence that should be

memorized:

& ^ | && ||

Example:

(false && true || false) yields false.

Example:
(true && true ^ true) yields false.

Nug18-1

Golden Nugget of Wisdom # 18

1. Suppose we have two classes, Big and Little. Little is a subclass of Big. Both have
a void method called xray; however, the xray method in Little is different and
overrides the version of xray in Big.

Big x = new Little();
x.xray(); //Which version of xray does it use?
 The version in Little

2. What we call methods in this book, some other texts call functions or
subroutines.

3. What we call signatures in this book, some other texts call headers.

4. Determining object type, legal methods, and where the methods are implemented.
(See Lesson 38.)

<class, superclass, or interface name> objectName = new <class or subclass name()>;

This specifies the object type and
what methods the object can use.

This tells us where the methods are implemented
that we are to use (including the constructor(s)).

5. The boolean quantity anObject instanceof ClassOrInterface returns true if the
anObject object was derived from either the class or interface represented by
ClassOrInterface. (See Lesson 38.)

6. The code in the left-hand panel below will produce the stack shown in the right-
hand panel at the completion of stck.push(“C”);. The toString method of the
Stack class is invoked to produce the resulting printouts:

Stack stck = new Stack();
stck.push(“A”);
stck.push(“B”);
stck.push(“C”);
System.out.println(stck);
String s = (String)stck.pop();
String ss = (String)stck.peek();
System.out.println(s + ss + stck);

C top of stack
B
A

[A, B, C] printout (notice top of stack
 is to the far right)

CB[A, B]

Nug19-1

Golden Nugget of Wisdom # 19

It is possible to have multiple constructors in the same class as is illustrated below:

public class DemoClass
{
 public DemoClass() //This one with no parameters is called the default

{ //constructor.
 …
 }

 public DemoClass(int i)
 {
 …
 }

 public DemoClass(int i, String s)
 {
 …
 }

 … remainder of class not shown…
}

1. All of the following instantiations are legal, and each will seek out the appropriate
constructor.

a. DemoClass obj1 = new DemoClass();
b. DemoClass obj2 = new DemoClass(36);
c. DemoClass obj3 = new DemoClass(12, “Yes”);

2. It is possible to make one constructor call another using the this keyword. For

example, suppose we instantiate an object obj using the default constructor as
follows:

DemoClass obj = new DemoClass();

Futhermore, suppose we want the default constructor to call the two-parameter
constructor and always pass an int value of 22 and a String value of “Sierra”. To
accomplish this, modify the default constructor as follows:

 public DemoClass()

{
 this(22, “Sierra”);
 …
 }

Nug20-1

Golden Nugget of Wisdom # 20

1. Initialization blocks are blocks of code embedded within a class, and as the name
implies, they are mostly used to initialize variables. Multiple initialization blocks are
possible as is shown in the sample class below:

public class DemoClass
{
 //Non-static initialization block
 { stateVar1 = 50; }

 //Static initialization block
 static //To manipulate static variables, use a static initialization block

{ stateVar2 = 20; }

public DemoClass() //constructor
{
 stateVar1++;
 stateVar2--;
}

… Methods and other state variables…

public int stateVar1; //If initialization blocks exist above don’t do any
public static int stateVar2; //initializing here.

}

2. Rules for initialization blocks:
• Non-static blocks run every time an object is created.
• Static blocks run just once (when the class is first loaded).
• Blocks are executed in the order in which they occur.
• Regardless of placement, code in the blocks executes before constructor code.

3. Sample usage:

DemoClass demo1 = new DemoClass();
System.out.println(demo1.stateVar1 + “ ” + demo1.stateVar2); //51 19
DemoClass demo2 = new DemoClass();
System.out.println(demo2.stateVar1 + “ ” + demo2.stateVar2); //51 18

Initialization blocks are rarely used and there really is no point in using them as in the
two sample blocks above. It would be more straightforward to just initialize these two
state variables on the bottom two lines where they are declared. So, what is the real
purpose of initialization blocks? Suppose we have a program that absolutely must run as
fast as possible; however, it has loops that require the laborious, time-consuming
calculation of something like Math.tan(Math.log(Math.sqrt(1- x* x))) for values of x
ranging from 1 to 360 in increments of 1. In this case it would be wise to iterate 360
times through a loop in an initialization block and precalculate all these values and store
in a state variable array such as double val[]. Then in the actual program, when needed,
quickly access the desired value with val[x].

Nug21-1

Golden Nugget of Wisdom # 21

Consider the following two classes:

public class Tester
{
 public static void main(String args[])

{
 int j;
 //System.out.println(j); //This line will not compile because j has
 //not been initialized.

 MyClass mc = new MyClass();
 System.out.println(mc.q); //prints 0

 }
}

public class MyClass
{
 public MyClass()
 {
 System.out.println(q); // prints 0

}

…other methods and state variables

public int q; //q is automatically initialized to 0

}

Notice that numeric state variables are automatically initialized to zero unless initialized
otherwise; however, ordinary (local) numeric variables (e.g. j above) must be initialized
before being used.

**

In the absence of specific initialization, we can say the following about declarations:

1. When only declared, local variables are not automatically initialized to
anything.

2. When only declared, objects are initialized to null (for an exception, see 4

below).

3. When declared, numeric arrays are initialized to zero.

4. When declared, a state variable is initialized to 0 (if it’s a numeric) or to “”
(empty String) if it’s a String.

Nug22-1

Golden Nugget of Wisdom # 22

1. Prototype:
The term prototype is extensively used in the c++ language. In Java, a method prototype
is basically the signature of an abstract method (has a trailing semicolon and no following
code). Following are examples:

 void delStat(int pdq, String s);
 String conCatBunch();
 double[][] burnTime(double d, int i);

Suppose an object, obj, has Object type objects stored in it. The following would
be the prototype of the getStuff() method such that obj.getStuff() would return a
two dimensional array of Object type objects:

 Object [][] getStuff();

2. Short-Circuiting:
Consider the following two questions that involve short-circuiting.

A. When Boolean And-ing two boolean expressions, when is only one expression
evaluated?

a. When the left expression is false a
b. When the right expression is false
c. When the left expression is true
d. When the right expression is true

B. When Boolean OR-ing two boolean expressions, when is only one expression

evaluated?

a. When the left expression is false
b. When the right expression is false
c. When the left expression is true c
d. When the right expression is true

3. isLetter, isDigit, isLetterOrDigit, isWhitespace, isLowerCase, isUpperCase
 In order to determine if the character at index j of String ss is a letter, for example, which
of the following would be an appropriate way to evaluate the boolean that is returned?

a. ss.isLetter(j)
b. ss.charAt(j).isLetter
c. Character.isLetter(ss.charAt(j))
d. ss.charAt(is.Letter())
e. Character.ss.isLetter(j)
Answer is c. The method isLetter() method is a static method in the
Character class and we must begin with Character (unless it’s imported).

Nug23-1

Golden Nugget of Wisdom # 23

1. char and int:
One of these can be directly stored into the other; however, the opposite can only be done
with a cast. See items 2 and 3 on page 13-1 for details.
 char ch = ‘x’;
 int j = 3;
 ch = j; //illegal

ch = (char)j; //legal
 j = ch; //legal

2. ASCII codes:

Character ASCII Character ASCII Character ASCII
0 48 A 65 a 97
1 49 B 66 b 98
2 50 C 67 c 99
.
8 56 Y 89 y 121
9 57 Z 90 z 122

3. Casting Objects back to their original form:
Suppose we have a Queue class that stores Object type objects. Futhermore, suppose that
we are storing String objects there (they are automatically converted to the Object type).
How do we get the Object type object returned by the dequeue method converted back
to a String type object. Assume that we have a Queue object called q.

1. (String)(q.dequeue())

This is the best way since it clearly shows we are casting what is returned by
dequeue.

2. (String)q.dequeue()
On the surface this looks like we are incorrectly casting just the q instead of what
q.dequeue() returns; however, it actually means the same as number 1 above.

4. XOR
XOR means bitwise exclusive-or. Its operator symbol is ^.

Nug24-1

Golden Nugget of Wisdom # 24

The following facts about Boolean Algebra were presented in Lesson 32. Examples are
presented here in different forms, yet are still applicable to the theorems. Study the
examples and convince yourself that they are really representations of the original
theorems. (Remember that addition here represents Or-ing and multiplication represents
AND-ing.)

1. Subtle Theorem:
This is subtle and not very obvious. It can be easily confirmed with a truth table.

a + b = a + (!a)*(b) …same as a || b = a || (!a) && (b)

Example1: !c + d = !c + c * d
Example 2: a + !b = a + (!a) * (!b)

2. Law of Absorption:
In these theorems, the value of boolean b does not matter (it could just take a hike).

 a = a * (a + b) …same as a = a && (a || b)
 a = a + (a * b) …same as a = a || (a && b)

Example 3: !k = !k * (!k + !h)
Example 4: !k = !k * (!k + h)
Example 5: !k = !k + (!k * !h)
Example 6: !k = !k + (!k * h)

**

3. A two-dimensional int array is created and printed as follows:

int ary[][] = { {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 0, 1, 2} };

for(int row = 0; row < ary.length; row++)
{
 for(int col = 0; col < ary[row].length; col++)

{
 System.out.print(ary[row][col] + “ ”);

}
System.out.println(“”);

}
 printout 1 2 3 4
 5 6 7 8
 9 0 1 2

Nug25-1

Golden Nugget of Wisdom # 25

Random Numbers: The following facts/examples are extracted from Lesson 30.

Random r = new Random(); //create a random object.
int i = r.nextInt(); // This yields a randomly selected integer in the range

 // Integer.MIN_VALUE to Integer.MAX_VALUE.
 //(-2,147,843,648 to 2,147,843,647 as specified in Appendix C)

int j = r.nextInt(7); // Yields an integer in the range 0 6
double d = r.nextDouble(); // Yields a double in the range 0 (inclusive) 1

 //(exclusive)

1. Print 20 integers in the range from 7 19.
for(int j = 0; j < 20; j++)

System.out.println(7 + r.nextInt(13)); // 13 = 19 – 7 + 1

2. Print 3005 floating point numbers in the range from 127.19 156.225.
for (int j = 0; j < 3005; j++)

System.out.println(127.19 + 29.035 * r.nextDouble());
// 29.035 = 156.225 – 127.19

Maps, Sets, keySet: (See Lesson 46 and Lesson 47)

1. Items in a set can’t be repeated.
2. The key values in a map can’t be repeated, the values can.
3. Write code that will create an Iterator object from Map m. Use it to print the key-

value pairs in m. Assume that only String objects are stored as the objects in the
map.

Set keySet = m.keySet(); //produces a Set object of the keys in m
Iterator itr = keySet.iterator(); //produces a Iterator for Set keySet
while(itr.hasNext()) //loop through the objects in the set
{
 String key = (String)itr.next();
 String value = (String)m.get(key);

System.out.println(“key = ” + key + “-----> value = ” + value);
}

Nug26-1

Golden Nugget of Wisdom # 26

Recursion: See Lesson 40 for more examples.

1. What is printed by the following? // 54 …(0 + 6 + 24 + 24)
System.out.println(recur1(0));

public static int recur1(int n)
{
 if (n > 10)
 return n - 2;
 else
 {
 n = n * 3;
 return n + recur1(n + 2);
 }
}

2. What is displayed by mayo(20); ? 0<2<6<20

public static void mayo(int n)
{

if (n < 2)
 System.out.print(n);
else
{
 mayo(n / 3);
 System.out.print(“<” + n);
}

}
Notice on this method we pass in these values of n.
 20 6 2 0
Nothing is printed until the last time when we are down to a 0. Then we start
coming back up the calling chain and printing.

3. What is returned by horseFly(4); ? 70
 public static int horseFly(int n)
 {
 if (n = = 0)
 return 2;
 else if (n = = 1)
 return 5;
 else
 return 2* horseFly(n - 1) + horseFly(n - 2);

 }

The way we approach this is to just build the sequence from the rules we
see expressed in the code. Term 0 has a value of 2 and term 1 has a value
of 5.

Nug26-2

Term number 0 1 2 3 4
Value 2 5

How will we get term 2? Well, the rule in the code says it’s twice the
previous term plus the term before that. That gives us 2*5 + 2 = 12.
Continue this to obtain the other terms.

Term number 0 1 2 3 4
Value 2 5 12 29 70

4. What is printed by the h(3)?]]]M[[[
public void h(int z)
{
 if(z = = 0)
 System.out.print(“M”);

else
{
 System.out.print(“]”);

h(z-1);
System.out.print(“[”);

}
}

Let’s begin analyzing this by observing the output of h(0). It simply prints
an “M”.

Term number 0 1 2 3
Value M

Now, what about h(1)? It first prints a “]” followed by h(z-1). But h(z-1) is
simply the previous term, and we already know that it’s an “M”. A “[”
follows. So our 2nd term is “]M[”.

Term number 0 1 2 3
Value M]M[

Similarly, each subsequent term is the previous term sandwiched in
between “]” and “[” and so we have:

 Term number 0 1 2 3

Value M]M[]]M[[]]]M[[[

 So, if we are asked for h(3) the answer is]]]M[[[.

Nug27-1

Golden Nugget of Wisdom # 27

Big O: The Big O value for an algorithm is roughly proportional to the time it takes the
algorithm to run. (See Lesson 39.)

• When asked for the smallest Big O value, this is equivalent to asking for the
smallest run time (best case).

• When asked for the largest Big O value, this is equivalent to asking for the
largest run time (worst case).

1. The run time for the following code is proportional to (n + 80)30n = 30n2 +240n.
 Following the practice of dropping the coefficients and using only the largest power,
 we are led to the Big O value of O(n2).

for(int j = 0; j < n + 80; j++)
{

for(int k = 0; k < 30*n; k++)
{ …some code… }

}

2. Big O for the following code is O(log n). Time is proportional to log2 n.
for(int j = 0; j < n; j*=2)
{ …some code… }

3. If ob is an ArrayList object, then Big O for ob.add(index, obj) is O(n) since this
insertion of a new object at index will require some fractional number of the preexisting n
elements to be moved forward one slot. A similar argument can be made for
ob.remove(index) also being O(n).

4. Review the chart on page 41-15.

**

floor, ceil, and round methods methods: (See Lesson 6).

1. Math.ceil(-156.72) returns –156.0

2. Math.floor(-156.72) returns –157.0

3. Math.ceil(156.72) returns 157.0

4. Math.floor(156.72) returns 156.0

5. Math.round(156.72) returns 157.0

6. Math.round(-156.42) returns -156.0

7. Math.round(-156.88) returns -157.0

Nug28-1

Golden Nugget of Wisdom # 28

The split method and regular expressions: (See Lesson 17 and Appendix AC)

String s = “Weird things”; //Use for problems 1 – 7.
1. String sp[] = s.split(“i”); //sp[0] = “We”, sp[1] = “rd th” , sp[2] = “ngs”

2. sp = s.split(“\\s”); // “\\s” means white space, sp[0] = “Weird”, sp[1] = “things”

3. sp = s.split(“ei”); // sp[0] = “W”, sp[1] = “rd things”

4. sp = s.split(“m”); // sp[0] = “Weird things”

5. sp = s.split(“r|h”); // “r|h” means either ‘r’ or ‘h’, sp[0] = “Wei”, sp[1] = “d t”
 // sp[2] = “ings”

6. sp = s.split(“[hi]”); // “[hi]” means h or i (same as “h|i”) sp[0] = “We”

 // sp[1] = “rd t” sp[2] = “” sp[3] = “ngs”
 //(notice the element of zero length)

7. sp = s.split(“ir|in”); // “|” means OR, sp[0] = “We”, sp[1] = “d th”, sp[2] = “gs”

String s = “Three spaces \t3”; //Use for problem 8.
8. sp = s.split(“\\s+”); //The + indicates multiple white space characters

 //sp[0] = “Three” sp[1] = “spaces” sp[2] = “3”

String s = “abc239 xyz9304amnop”; //Use for problem 9.
9. sp = s.split(“[0-9]+a”); //“9304a” is a delimiter sp[0] = “abc239 xyz”

 //sp[1] = “mnop”

10. “\\.” Escape sequence for a literal period.

String s = "WaW7423WV is my password"; //Use for problem 11.
11. String sp[] = s.split("W[1-8]*|[^\\w]");

The delimiters are a W followed by zero or more digits between 1 and 8
 or

not a word character.
sp[0] = “”
sp[1] = “a”
sp[2] = “”
sp[3] = “V”
sp[4] = “is”
sp[5] = “my”
sp[6] = “password”

Nug29-1

Golden Nugget of Wisdom # 29

1. The Iterator interface is much simpler than the ListIterator interface. The three methods
of the Iterator interface are: (see Lesson 44)

Iterator method
signature

Action

boolean hasNext() Returns true if there are any items following the current position.
Object next() Returns item following current position and then advances the

position… providing there is at least one item after the current
position.

void remove() Removes the item returned by last successful next() …providing
there were no other intervening remove operation.

2. We must handle checked exceptions with one of two choices. Notice that with checked

exceptions, doing nothing is not a choice, it won’t even compile unless you do one of the
following: (see Lesson 37)

A. Handle the exception with try, catch, finally.
try{ …some code that might generate a checked exception… }

catch(<Exception Class Name> objectName)
{
 …code here only runs if an exception was thrown in the try block…
}

finally{ … this code always executes…}

B. Put a throws IOException (or some other appropriate checked exception) tag on

the method signature as in the following example:

public void readTheDisk() throws IOException
{
… code that uses a file reader…might encounter a corrupt or missing
 file…
}

3. Application of abstract and final to a class (see Lesson 36):
a. abstract… can’t instantiate objects from the class. If the class has any abstract

methods, the class must also be abstract.
b. final …can’t inherit this class.

4. Application of abstract and final to a method (see Lesson 36):
a. abstract… the method has no code. Code must be implemented in an

inheriting class. Method signature ends in a semicolon.
b. final… this method can’t be overridden in an inheriting class.

Nug30-1

Golden Nugget of Wisdom # 30

1. Static methods and variables (see Lesson 20)
Static variables (also called class variables) are declared with the static keyword.

public int statVar = 30; //just an ordinary data member
public static int statVar1 = 30; //a static data member

There are two ways to access a static data member or static method. For the sake of
the following examples, assume that the class name is MyClass and that it has static
method method1 and static instance field statVar1.

a. Instantiate an object of the class (call it obj) and use it to access the variable or
the method… obj.statVar1… obj.method1().

b. Without an object, use the class name directly …MyClass.statVar1 …

MyClass.method1().

Static data members retain their previous values as new objects are created and are
available to all objects. They present the same value to all objects.

2. NumberFormat class (see Lesson 27 and Appendix Z)

//An object is not made with “new”, rather it is returned by a static method.
NumberFormat fmt = NumberFormat.getNumberInstance();
fmt.setMaximumFractionDigits(4); //guaranteed to show no more than 4 places
fmt.setMinimumFractionDigits(3); //guaranteed to show at least 3 places
String s = fmt.format(5.0); // s = “5.000”
String s = fmt.format(3.22058); // s = “3.2206”

3. The ListIterator interface (see Lesson 44)

The ListIterator interface has the methods of the Iterator interface (hasNext, next, and
remove) plus the following (notice remove has been modified):

ListIterator method
signature

Action

void remove() Removes the item returned by last successful next() or
previous() …providing there were no intervening add or
remove operations.

boolean hasPrevious() Returns true if there are any items preceding the current
position.

Object previous() Returns the item preceding the current position and
moves the position back.

int nextIndex() Returns index of next item (-1 if none). In effect this is
the current position of the ListIterator.

int previousIndex() Returns index of previous item (-1 if none).
void add(o) Insert object o just left of the current position.
void set(o) Replaces the last item returned by last successful next()

or previous() with object o …providing there were no
intervening add or remove operations.

Appendices

Appendix A-1

Appendix A …Key Words

The following key-words must be used in the proper context. They should not be used as class,
primitive variable, or object names.

abstract continue for new switch
assert default goto* package synchronized
boolean do if private this
break double implements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try
char final interface static void
class finally long strictfp volatile
const* float native super while

* Reserved keywords, but not used.
true, false, and null are all literals, not keywords and can be assigned.

Appendix B…..Escape Sequences

If you want to print any of the characters in the left column below, you can’t just insert them into
the sequence of other characters to be printed. For example, the apostrophe (sometimes called a
single quote) would not print properly in the first line below:

 System.out.println(“It’s a good thing.”); //won’t print correctly

System.out.println(“It\’s a good thing.”); //correct way to do it

Desired Character Escape Sequence Meaning
 \b backspace
 \t tab
 \n new line (also called line break)
 \r carriage-return
 \f form feed
“ \” double quotation mark
‘ \’ single quotation mark
\ \\ backslash

Appendix C-1

Appendix C …Primitive Data Types

Type Storage Range of Values
Numeric Types:
byte 1 byte -128 to 127 *
short 2 bytes -32,768 to 32,767
int 4 bytes -2,147,483,648 to 2,147,483,647 **
long 8 bytes -9,223,372,036,854,775,808L to 9,223,372,036,854,775,807L***
float 4 bytes -3.40282347E+38f to 3.40282347E+38f ****
double 8 bytes -1.79769313486231570E+308 to 1.79769313486231570E+308

Miscellaneous types:
char 2 bytes 0 to 65,536
boolean 1 bit true, false

Both float and double types are considered to be “floating point” numbers. The types byte,
short, int, and long are all integers.

* It is interesting to see what happens when an integer that exceeds the range of a byte is
 cast as a byte. Consider the following:

byte x = (byte)128;

The value of x is –128, and here’s why:

 128dec in binary is written as an eight bit byte as: 1 0 0 0 0 0 0 0

This byte has its most significant bit set to a 1 so this is interpreted as a
negative number (see Appendix G). What is the value of this negative
number? As explained in Appendix G, invert all 8 bits and add one as follows:

0 1 1 1 1 1 1 1 (inverted form)
 1 (add 1)
1 0 0 0 0 0 0 0 (notice we “carried” to get the final 1 on the left)

 This is equivalent to 128dec, so our final answer is –128.

** The Integer class has two data member constants that give these two values:
• Integer.MIN_VALUE = -2,147,483,648
• Integer.MAX_VALUE = 2,147,483,647

***Any time we wish to store a literal number in a Long, append an L (lower case ok but
 confusing).

 Long x = 345L; //L is necessary
 long y = 345; //Would be ok to append L, but not necessary

**** Any time we wish to store a literal number in a float variable it is wise to always
 append an f; otherwise, the compiler might see the number as a double:

float x = 123.76f; //f is necessary
float y = 57; //Would be ok to put f here… ok to omit since 57 is non fractional.
Float z = 183.2f; //f is necessary even if the number is an integer

Appendix D-1

Appendix D…..ASCII Codes

Dec Hex Oct Binary Html Character Comments/Description

0 0 000 000 0000 NUL Null (Shaded region, unprintable characters)
1 1 001 000 0001 SOH Start of heading
2 2 002 000 0010 STX Start of text
3 3 003 000 0011 ETX End of text
4 4 004 000 0100 EOT End of transmission
5 5 005 000 0101 ENQ Enquiry
6 6 006 000 0110 ACK Acknowledge
7 7 007 000 0111 BEL Bell, beep, etc
8 8 010 000 1000 BS Backspace
9 9 011 000 1001 TAB Horizontal tab

10 A 012 000 1010 LF Line feed; also called NL (new line)
11 B 013 000 1011 VT Vertical tab
12 C 014 000 1100 FF Form feed; also called NP (new page)
13 D 015 000 1101 CR Carriage return
14 E 016 000 1110 SO Shift out
15 F 017 000 1111 SI Shift in
16 10 020 001 0000 DLE Data link escape
17 11 021 001 0001 DC1 Device control 1
18 12 022 001 0010 DC2 Device control 2
19 13 023 001 0011 DC3 Device control 3
20 14 024 001 0100 DC4 Device control 4
21 15 025 001 0101 NAK Negative acknowledge
22 16 026 001 0110 SYN Synchronous idle
23 17 027 001 0111 ETB End of transmission block
24 18 030 001 1000 CAN Cancel
25 19 031 001 1001 EM End of medium
26 1A 032 001 1010 SUB Substitute
27 1B 033 001 1011 ESC Escape (the Esc key on the keyboard)
28 1C 034 001 1100 FS File separator
29 1D 035 001 1101 GS Group separator
30 1E 036 001 1110 RS Record separator
31 1F 037 001 1111 US Unit separator
32 20 040 010 0000 Space
33 21 041 010 0001 ! ! Exclamation mark
34 22 042 010 0010 " “ Double quote
35 23 043 010 0011 # # Pound sign
36 24 044 010 0100 $ $ Dollar sign
37 25 045 010 0101 % % Percent sign
38 26 046 010 0110 & & Ampersand
39 27 047 010 0111 ' ‘ Apostrophe
40 28 050 010 1000 ((Left parenthesis
41 29 051 010 1001)) Right parenthesis

Appendix D-2

Dec Hex Oct Binary Html Character Comments/Description
42 2A 052 010 1010 * * Asterisk
43 2B 053 010 1011 + + Plus sign
44 2B 054 010 1100 , , Comma
45 2D 055 010 1101 - - Dash (also used as a minus sign)
46 2E 056 010 1110 . . Period
47 2F 057 010 1111 / / Forward slash
48 30 060 011 0000 0 0
49 31 061 011 0001 1 1
50 32 062 011 0010 2 2
51 33 063 011 0011 3 3
52 34 064 011 0100 4 4
53 35 065 011 0101 5 5
54 36 066 011 0110 6 6
55 37 067 011 0111 7 7
56 38 070 011 1000 8 8
57 39 071 011 1001 9 9

 Digits

58 3A 072 011 1010 : : Colon
59 3B 073 011 1011 ; ; Semicolon
60 3C 074 011 1100 < < Less than symbol
61 3D 075 011 1101 = = Equal sign
62 3E 076 011 1110 > > Greater than symbol
63 3F 077 011 1111 ? ? Question mark
64 40 100 100 0000 @ @ “at” sign
65 41 101 100 0001 A A
66 42 102 100 0010 B B
67 43 103 100 0011 C C
68 44 104 100 0100 D D
69 45 105 100 0101 E E
70 46 106 100 0110 F F
71 47 107 100 0111 G G
72 48 110 100 1000 H H
73 49 111 100 1001 I I
74 4A 112 100 1010 J J
75 4B 113 100 1011 K K
76 4C 114 100 1100 L L
77 4D 115 100 1101 M M
78 4E 116 100 1110 N N
79 4F 117 100 1111 O O
80 50 120 101 0000 P P
81 51 121 101 0001 Q Q
82 52 122 101 0010 R R
83 53 123 101 0011 S S
84 54 124 101 0100 T T
85 55 125 101 0101 U U
86 56 126 101 0110 V V
87 57 127 101 0111 W W

 Upper case (capital) letters

Appendix D-3

Dec Hex Oct Binary Html Character Comments/Description
88 58 130 101 1000 X X
89 59 131 101 1001 Y Y
90 5A 132 101 1010 Z Z

91 5B 133 101 1011 [[Left square bracket
92 5C 134 101 1100 \ \ Backslash
93 5D 135 101 1101]] Right square bracket
94 5E 136 101 1110 ^ ^
95 5F 137 101 1111 _ _ Underscore
96 60 140 110 0000 ` `
97 61 141 110 0001 a a
98 62 142 110 0010 b b
99 63 143 110 0011 c c

100 64 144 110 0100 d d
101 65 145 110 0101 e e
102 66 146 110 0110 f f
103 67 147 110 0111 g g
104 68 150 110 1000 h h
105 69 151 110 1001 i i
106 6A 152 110 1010 j j
107 6B 153 110 1011 k k
108 6C 154 110 1100 l l
109 6D 155 110 1101 m m
110 6E 156 110 1110 n n
111 6F 157 110 1111 o o
112 70 160 111 0000 p p
113 71 161 111 0001 q q
114 72 162 111 0010 r r
115 73 163 111 0011 s s
116 74 164 111 0100 t t
117 75 165 111 0101 u u
118 76 166 111 0110 v v
119 77 167 111 0111 w w
120 78 170 111 1000 x x
121 79 171 111 1001 y y
122 7A 172 111 1010 z z

 Lower case (small) letters

123 7B 173 111 1011 { { Left curly brace
124 7C 174 111 1100 | | “pipe” symbol
125 7D 175 111 1101 } } Right curly brace
126 7E 176 111 1110 ~ ~ Tilde
127 7F 177 111 1111 DEL Delete (unprintable character)

ASCII is an acronym for “American Standard Code for Information Interchange” and was
originated by visionary, Robert Bemer, in the early 1950’s. This computer science pioneer made
numerous contributions when, in the early days of computing, instead of concentrating on
hardware (as most were doing), he specialized in software.

Appendix E-1

Appendix E…..Saving Text Files

Before we learn to make text files (see Appendix F for a better understanding of text files),
we need to adjust how files display in Windows Explorer. We need to be able to see file
extensions, etc. so as to verify the file names and locations that we create. The following
settings are suggested:

First, right-click on Start in the lower left corner of the desktop. Then click on Explore. This
launches Windows Explorer.

In Windows Explorer click on the drop-down on
this icon and then select Details.

Fig. E-1

Click on the Tools Menu item and then select
Folder Options.

Fig.E-2

On the Folder Options dialog,
select the View tab.

 Make the settings shown here.

Click the Apply button.

Click the Like Current Folder
button. You will be asked to
confirm this last operation.
Just answer “Yes”.

Click OK.

Fig. E-3

Appendix E-2

In creating text files (sometimes called ASCII coded text files) for this course, we
recommend Microsoft Notepad. To access Notepad use the following menu sequence:

 Start | Programs | Accessories | Notepad

The most important thing to remember is to set the Save as type box in the Save as dialog
correctly. There are two possible settings:

1. Text Documents
This saves a text file with the extension “.txt”. Students will often choose this setting
and type in a file name something like, “Data36.in”, expecting that to be the full file
name. If the settings on the previous page have not been done, the file viewed either
in Windows Explorer or under the My Computer icon on the desktop will hide the
extension and show the file as “Data36.in” …when, in fact, the full file name is
“Data36.in.txt”.

a. The number one thing to remember about the Text Documents setting is that a
final extension of “.txt” is appended to whatever name you type in the File
name box. With the proper setting from the previous page, the file name will
be viewed as “Data36.in.txt” and you would see the error of your ways.

b. If “.txt” is the desired file extension, then don’t try to enter an extension in the

File name box. Just enter something like “Data36” and the “.txt” extension
will automatically be added to it to produce “Data36.txt”.

2. All Files (*.*)

This setting also produces text files. However, no extension is automatically added
when you save the file. So, if you type “Data36.in” in the File name box, that’s the
final file name.

If you are using Windows 98, regardless of the setting in the Save as type box it will
always append a “.txt” to the end of the file name. If necessary use Windows Explorer
to change the name of the file and thus amend the extension as needed. (When renaming,
Windows may tell you that this could make the file unstable. Don’t worry about this; just go
ahead and click OK.)

You can also use Microsoft WordPad (a very simple word processor) to create text files. To
access WordPad, use the following menu sequence:

Start | Programs | Accessories | WordPad

When you save, choose Text Document from the Save as type box. This is the only way to
save as a text document. Unfortunately, it also appends a “.txt” to whatever you type in the
File name box. If you desire a different extension, your only recourse will be to go into
Windows Explorer, right-click on the file and then rename it.

Regardless of how you create your text file, you should verify its existence and
location by using either Windows Explorer or the desktop icon, My Computer. If the
settings on the previous page were made correctly, you should be able to view the full name
and extension of your file.

Appendix F-1

Appendix F….Text and Binary Files Explained

There are two fundamental ways to store files…text and binary. We will show how to store the
number 12345 in both formats:

1. Text

It takes 5 bytes to store 12345, one byte for each character. Below are the contents of
each byte:

 49dec 50dec 51dec 52dec 53dec

 011 0001bin 011 0010 bin 011 0011bin 011 0100bin 011 0101bin

Look in Appendix D and you will see, for example, that 49dec is the ASCII code for 1dec

50dec is the ASCII code for 2dec, etc.

2. Binary

It takes four bytes (because it’s an integer, see Appendix C) to store the number 12345 as
follows.

 0000 0000 0000 0000 011 0000 bin 011 1001 bin

“Jammed” together we have

000000000000000001100000111001 bin = 12345 dec

Appendix G-1

Appendix G …..Two’s Complement Notation

The two’s complement notation is the protocol used to store negative numbers. Let’s consider
the integer (4 bytes) 13 in its binary form:

 00000000 00000000 00000000 00001101bin = 13dec

What could we do to make this a negative number? The way we approach this is to think about
negative 13 in this way:

 13 + (negative 13) = 0

So, our requirement will be that negative 13 be represented in such a way that when added
to 13 it will give a result of 0.

We will begin by adding the original binary form of 13 to the ones’ complement (invert, 1’s
changed to 0’s and vice versa) of 13.

 00000000 00000000 00000000 00001101
 11111111 11111111 11111111 11110010
 11111111 11111111 11111111 11111111

This is not what we want. We want all zeros; however, notice if we add 1 to this answer a
carry will “ripple” all the way through, and if we just ignore the last carry on the end, we
have our answer of 0.

11111111 11111111 11111111 11111111
 1

 100000000 00000000 00000000 00000000
 |
 Ignore this last carry

So, the way to get –13 is to invert 13 and add 1.

 00000000 00000000 00000000 00001101 (13 in binary)

 11111111 11111111 11111111 11110010 (13 inverted)

 1 (add 1)
11111111 11111111 11111111 11110011 (two’s complement form of –13)

Rules/Observations:

1. To produce the negative of a number (two’s complement form), perform the following
three steps.

a. Express the number in binary form
b. Invert the number (change 1’s to 0’s and vice versa)
c. Add 1

2. Negative numbers will always have a most significant bit (msb) value of 1.
3. Positive numbers will always have an msb value of 0.

Appendix G-2
4. This msb is known as the sign bit and does not have a positional value as do the other

bits.

As an interesting exercise, you might try the following code.

 int x = ???; // enter any number you like for ???
 System.out.println(x + (~x + 1)); //prints 0 for any value of x

 //Notice you are inverting x and adding 1 to produce
 //the negative of x.

**

We are now going to take a completely different approach to ten’s complement and see that
when extending this idea to the binary system, we would have the two’s complement.

Consider an old-fashioned car mileage indicator (odometer). If the register rotates forward, it
performs addition one mile at a time. If the register rotates backward, it performs subtraction one
mile at a time. Below is a five-digit register rotating backwards:

 00004
 00003
 00002
 00001
 00000
 99999

99998
99997

What we have done here is to work the problem 4 – 7, because we started with 4 and then rotated
backwards 7 places. The answer is, of course, –3. However, the 99997 we got is what we call the
ten’s compliment of 3. In other words, 99997 is one way to represent –3. To see that 99997
really corresponds to –3, let’s work the problem 4 + (-3) and see if we get +1.

 00004
 99997 (This corresponds to –3)
 100001 (This is the answer if we ignore the “left-most” carry.)

Similarly, a backwards rotating “binary” odometer would look like this:

 0100
 0011
 0010
 0001
 0000
 1111
 1110
 1101

Appendix G-3

Again, what we are doing here is working the problem 4 – 7, because we start with 4 and rotate
backwards 7 places. The answer is –3 and the 1101bin we get is what we call the two’s
complement of 3. To see if this really works, let’s do the problem 4 + (-3) and see if we get 1.

 0100 bin = 4 dec

 1101 bin = -3 dec

 10001 bin = 1 (ignoring the “left-most” carry)

Notice that the two’s compliment representation of –3 dec (1101 bin) is exactly what we would get
from the previous discussion where we would have inverted and added 1.

Appendix H-1

Appendix H ….Operator Precedence

Suppose there was a need to evaluate this expression:

 ((int)(3 *a)) ^ p | 3 & q | ~b

What part would you do first? You would need a chart specifying the order in which operations
are done.

As a matter of good programming, you should never write such a statement because it is difficult
to maintain. Instead, break this up into a sequence of several lines of code in which the sequence
determines the order you intend. Below is the order in which operations are done.

Operator Function
() Parenthesis
[] Array subscript
. Object member selection
++ Increment
-- Decrement
+ Unary plus sign. Unary operators accept only one operand.
- Unary minus sign. (for example, -2 means negative two)
! boolean NOT
~ Bitwise NOT
(type) Type cast, example: (int)

Arithmetic Operators
* Multiplication
/ Division
% Modulus
+ Addition or concatenation
- Subtraction
<< Bitwise shift left, preserve sign
>> Bitwise shift right, preserve sign
>>> Bitwise shift right, do not preserve sign

Comparison Operators
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
instanceOf Class membership
= = Equal to
!= Not equal to

Boolean Operators
& boolean AND without short-circuit if boolean arguments
& Bitwise And
^ boolean exclusive OR without short-circuit if boolean arguments

Appendix H-2
Operator Function
^ Bitwise exclusive OR
| boolean OR without short-circuit if boolean arguments
| Bitwise OR
&& boolean AND with short-circuit
|| boolean OR with short-circuit

Assignment Operators
?: Ternary conditional (selection operator)
= Assignment
+= Addion and assignignment
-= Subtraction and assignment
*= Multiplication and assignment
/= Division and assignment
%= Modulo and assignment
<<= Shift left(preserve sign) and assign
>>= Shift right(preserve sign) and assign
>>>= Shift right(do not preserve sign) and assign
&= boolean or bitwise AND and assignment
|= boolean or bitwise OR and assignment
^= boolean or bitwise exclusive OR and assignment

Appendix I-1

Appendix I ….Creating Packages and Importing Classes

Java has several classes supplied with the language that you must “import” before you can make
objects from them and/or access their methods. Let’s suppose your class is called MyClass and
you wish to import the Random class (for the purpose of creating random numbers inside the
methods of your class).

First, you must know the “package” name. For the Random class the package name is java.util .
There are several classes in this package. To bring in the Random class only, place the following
command at the top of your class as follows:

 import java.util.Random;
 //Use multiple lines here if there is a need to import other classes

public class MyClass
{
 …methods and state variables…
}

It is very common to import all of the classes in a package using the wildcard character “*”.

 import java.util.*;

Below we list just a few packages and some useful classes in them.

 java.util Random, Arrays, StringTokenizer, Interface, ListIterator, Set
 java.text NumberFormat
 java.io File, FileWriter, PrintWriter, IOException

 (Before proceeding, the reader might want to first read Appendix X concerning the compiling
and execution of classes from a command line prompt. That knowledge is assumed in much of
the following discussion.)

Why we have packages:
Now we come to the task of understanding what “packages” really are and how to create them.
Packages serve two basic needs:

1. Packages are a convenient way to organize classes. Simply put, this means we can put
related classes in the same package. When it is realized that there are thousands of
classes, this is not only a convenience, it’s a necessity.

2. Packages help us avoid naming conflicts. As new classes are created, it is inevitable that

there will be conflicts with some of the thousands of existing classes. Such conflicts are
avoided by using the package name as a prefix to the class name (for example,
java.util.Arrays.sort();, where java.util is the package name and Arrays is a class inside
it.)

Appendix I-2

Creating a package:
Let’s now look at the six steps needed to create a package. For each step, two examples will be
given.

1. Choose a base folder path under which the package will be stored.

Example 1: C:\MyBaseFolder

Example 2: C:\MyStuff\Libraries

2. Create a package name. You want your package name to be unique so that your

package/class names will not conflict with others. Simple names may not conflict on your
development computer; however, if you distribute your class to the outside world where
you have no control, there might be a conflict.

Example 1: mypackage

Example 2: cleveland.maplest.smith.bill (Notice multiple parts are separated by

 dots.)

3. Create a sub folder(s) under the base folder path that matches the package name.

Example 1: C:\MyBaseFolder\mypackage

Example 2: C:\MyStuff\Libraries\cleveland\maplest\smith\bill

4. Create your source files and include as the very first noncomment line, a package
statement. Be sure these files are saved with the .java extension.

Example 1: package mypackage;
 public class Tester
 { … some code … }

Example 2: package cleveland.maplest.smith.bill;
 public class Test
 { … some code … }

Source files in which there is no package designator are said to be stored in the
default package.

5. Copy your source file (the text file with extension .java) into the package subfolder.

Example 1: C:\MyBaseFolder\mypackage\Tester.java

Example 2: C:\MyStuff\Libraries\cleveland\maplest\smith\bill\Test.java

6. Change to the base folder and from that position compile the class so as to produce a

corresponding .class file. The following assumes you are in the “command line prompt”
screen via the sequence Start | Run | cmd and that the Path variable points to the bin
folder of your Java SDK as described in Appendix X.

Appendix I-3

Example 1: cd C:\MyBaseFolder (make the base folder the current folder)
 javac mypackage\Tester.java (compile)

Example 2: cd C:\MyStuff\Libraries
 javac cleveland\maplest\smith\bill\Test.java

How Java finds Classes:
We should now have a package; however, it’s useless unless we know how to use it. First, we
need to understand how Java finds the classes its needs. The compiler uses a special object called
the class loader to sequentially locate the classes it needs.

1. The class loader first searches for standard Java classes that are a fundamental part of
the language.

Optional packages are sought in the following ways.

2. Next, an extension mechanism is used to look for .jar files (bundling several classes)
in the …jre\lib\ext subfolder of the Java SDK installation. This is where you should
put extra or nonstandard jar files so that your IDE can recognize them.

3. Finally, if the desired class is not found inside a .jar file in the ext folder, then the

class loader searches the classpath. The discussion that follows shows how to create
a classpath so the compiler and JVM (Java Virtual Machine needed at runtime) can
locate and use classes within packages we create or otherwise bring in from the
outside world.

Creating and using classpath:
The classpath variable simply does what its name suggests. It provides a path for Java indicating
where we are storing our extra classes. There are three ways to use classpath:

 For each “Example 1” below we will assume that we are trying to compile a class file

Called MyClass1.java and that it has references to the Tester class in the mypackage
package. Likewise, for each “Example 2” below we will assume that we are trying to
compile a class file called MyClass2.java and that it has references to the Test class in the
cleveland.maplest.smith.bill package. Also assume that MyClass1.java and
MyClass2.java are in the same folder and that that folder is the current folder.

• Use -classpath as a command line option when compiling.

Example 1: javac –classpath .;C:\MyBaseFolder MyClass1.java

Example 2: javac –classpath .;C:\MyStuff\Libraries MyClass2.java

In using the –classpath option notice that it is immediately followed by the paths
at which the base folder of our package is located. Separate the various paths
with semicolons. Notice for each example that we are specifying two paths. One
is simply a “dot”. This indicates the current directory and if not used, the compiler
will not see MyClass1.java or MyClass2.java in the current directory. Always use
the dot.

Appendix I-4

• The above technique of using the –classpath option can become tedious if used very
often during a session in the DOS prompt window. There is a way to enter the class path
just once and have it persist during the current “command line” session. At the command
line prompt, enter the following:

Example 1: set classpath = .;C:\MyBaseFolder

Example 2: set classpath = .;C:\MyStuff\Libraries

 When compiling, all you now have to enter is javac MyClass1.java etc.

• Setting classpath as just described has the drawback of being only a temporary
Environment Variable. It evaporates and is lost as soon as we close the command line
window. In Windows 2K and XP there is a way to make it persist even after the computer
is turned off and/or restarted. To do this, use the following sequence:

Start | Settings(skip this step for XP) | Control Panel | System | Advanced Tab |
Environment Variables

Create a new User Variable for <your logon name> called classpath with contents
equivalent to the base folder path:

 Example 1: .;C:\MyBaseFolder

 Example 2: .;C:\MyStuff\Libraries

 Typically, this takes effect without the necessity of a reboot, but if things don’t work
immediately, try restarting the computer. If you want this new classpath to affect all
users and if your logon name has Administrative permission, instead, create a new
classpath variable in the System Variable section with the same contents as above.

If you created a System Variable, restart the computer. The classpath variable should
now be in effect and permanent.

Accessing your own packages from within an IDE:
Unfortunately, none of the above techniques allows you to access your own class packages from
within an IDE. It will be necessary to make setting from within the IDE to access these outside
classes. Look for a Settings, Preference, etc. menu and then usually for a Libraries submenu.
Many times the IDE will not call it a classpath. All you will need to do is specify the base folder
path of where your package resides. It is a common mistake to give the full path right down to
the class itself. Part of that path is, of course, the package name itself. Just remember to give
only the base folder path. For our two examples it would be:

 Example1: C:\MyBaseFolder

 Example 2: C:\MyStuff\Libraries

Notice that this IDE setting typically does not require the “dot” as does the classpath variable.

Appendix I-5

After all this talk about packages you way have wondered where important classes like, for
example, those given by java.util.* are located. Search your hard disk for a folder or sub folder
matching this package name, and you won’t find it. The class must be there somewhere because
we use it all the time, but where? It’s tucked away along with the bulk of the standard runtime
classes in a jar file. Its location is typically:

 C:\Program Files\Java\jdk1.5.0_04\jre\lib\rt.jar

If you have Winzip on your computer you can examine the classes inside this or any other jar
file.

In summary, a student of Java should be able to look at an import statement such as the
following and be able to tell which is the name of the class and which is the name of the
package.

 import java.util.StringTokenizer;

For this example, java.util is the name of the package and StringTokenizer is the name of the
class.

Appendix J-1
Appendix J …..Typical Contest Classes and Interfaces

class java.lang.object

• boolean equals(Object other)
• String toString()
• int hashCode()

interface java.lang.Comparable
• int compareTo(Object other)

//return value < 0 if this is less than other
//return value = 0 if this is equal to other
//return value > 0 if this is greater than other

class java.lang.Integer implements java.lang.Comparable

• Integer(int value) //constructor
• intValue()
• boolean equals(Object other)
• static String toString(int i)
• static String toString(int i, int base)
• int compareTo(Object other) //specified by java.lang.Comparable
• static int parseInt(String s) //Parses the string argument as a signed decimal integer
• static int parseInt(String s, int base) //returns a decimal int (s is expressed in base b)

class java.lang.Double implements java.lang.Comparable
• Double(double value) //constructor
• double doubleValue()
• boolean equals(Object other)
• String toString()
• int compareTo(Object other) //specified by java.lang.Comparable
• static double parseDouble(String s)

class java.lang.String implements java.lang.Comparable
• int compareTo(Object other) //specidied by java.lang.Comparable
• boolean equals(Object other)
• int length()
• String substring(int from, int to) //returns the substring at from and ending at to-1
• String substring(int from) //returns substring(from, length())
• int indexOf(String s) //returns the index of the first occurrence of s; -1 if not found
• int indexOf(String str, int fromindex) //returns the index of the first occurrence of of str

 // starting at index fromindex
• char charAt(int index) //returns the character at the specified index
• int indexOf(int ch) //returns the index of the first occurrence of of thecharacter ch
• int indexOf(int ch, int fromindex) // returns the index of the first occurrence of the

 //character ch starting at index fromindex
• char [] toCharArray() //converts String into a character array
• static String copyValueOf(char [] ch) //converts a char array into a String
• static String valueOf(char [] ch) //converts a char array into a String

Appendix J-2

• String toLowerCase() //converts all characters to lower case

• String toUpperCase() //converts all characters to upper case
• String [] split(String regex) //splits String into elements of a String array around matches

 //to the “regular expression” regex
• String replace(char old, char new) //replace all occurrences of char old with char new
• String replace(String a, String b) //replace all occurrences of String a with String b
• String replaceAll(String regex, String replacement) //replace all matches to the regular

 // expression regex with replacement
• String replaceFirst(String regex, String replacement) //replace first match to the regular

 // expression regex with replacement
class java.lang.Character

• static boolean isDigit(char ch)
• static boolean isLetter(char ch)
• static boolean isLetterOrDigit(ch)
• static boolean isLowerCase()
• static boolean isUpperCase()
• static boolean isWhitespace()
• static char toUpperCase(char ch)
• static char toLowerCase(char ch)

class java.lang.Math
• static int abs(int x)
• static double abs(double x)
• static double pow(double base, double exponent)
• static double sqrt(double x)
• static double ceil(double a)
• static double floor(double a)
• static double min(double a, double b)
• static double max(double a, double b)
• static double random()
• static long round(double a)

class java.util.Random

• int nextInt() //returns Integer.MIN_Value ≤ int value ≤ Integer.MAX_Value
• int nextInt(int i) //returns 0 ≤ int value ≤ i-1
• double nextDouble()

interface java.util.List<E>
• boolean add(E x)
• int size()
• Iterator<E> iterator()
• ListIterator<E> listIterator()

class java.util.ArrayList<E> implements java.util.List<E>
 (methods in addition to the List methods)

• E get(int index)
• E set(int index, E x) //replace the element at index with x and returns old one

Appendix J-3

• void add(int index, E x) //inserts x at position index sliding elements right of index

 //forward one position. Adjusts size.
• E remove(int index) //removes element from position index, sliding elements at

 //position index + 1 and higher to the left. Adjusts size.

class java.util.LinkedList<E> implements java.util.List<E>
 (methods in addition to the List methods)

• void addFirst(E x)
• void addLast(E x)
• E getFirst()
• E getLast()
• E removeFirst()
• E removeLast()

interface java.util.Set<E>

• boolean add(E x)
• boolean contains(Object x)
• boolean remove(Object x)
• int size()
• Iterator<E > iterator()

class java.util.HashSet<E> implements java.util.Set<E>
class java.util.TreeSet<E> implements java.util.Set<E>

interface java.util.Map<K, V>

• boolean containsKey(Object key)
• Set <Map.Entry<K, V>> entrySet() //Returns a set of Map.Entry objects (only

//referenced with an iterator)
• V get(Object key)
• Set <K> keySet()
• Object put(K key, V value)
• int size()

class java.util.HashMap implements java.util.Map<K, V>
class java.util.TreeMap implements java.util.Map<K, V>

interface java.util.Map.Entry<K, V>

• K getKey()
• V getValue()
• V setValue(V value)

interface java.util.Iterator<E>

• boolean hasNext()
• E next()
• void remove()

interface java.util.ListIterator extends java.util.Iterator<E>
 (methods in addition to the Iterator methods)

Appendix J-4
• void add(E x)
• void set(E x)

class java.lang.StringBuffer

• StringBuffer append(char c)
• StringBuffer append(String str)
• StringBuffer append(StringBuffer sb)
• int capacity()
• char charAt(int index)
• StringBuffer delete(int start, int end) //character at index end is not deleted
• StringBuffer deleteCharAt(int index)
• StringBuffer insert(int offset, char c) //insert just before index offset
• StringBuffer insert(int offset, String s) //insert just before index offset
• StringBuffer replace(int start, int end, String replacementString) // the substring starting

//at index start and ending with index end –1 is replaced with replacementString
• StringBuffer reverse() //for example, changes “Hello” into “olleH”
• int length()
• void setCharAt(int index, char ch)
• String substring(int start)
• String substring(int start, int end)
• String toString()

class java.util.Scanner

• Scanner(InputStream source) //source is normally System.in
• Scanner(File inputFilePathAndName)
• Scanner(String s) //Total of three constructors
• String next() //Returns the next String from the current position up to the next delimiter
• String nextLine() //Returns the String from the current position to the end of the line.
• double nextDouble
• int nextInt()
• Scanner useDelimiter(String regex)
• String findInLine(String regex) //Advances position and returns the String found or null.
• boolean hasNext(String regex)
• boolean hasNext()
• boolean hasNextDouble()
• boolean hasNextInt()
• Scanner skip(String regex)
• String findWithinHorizon(String regex, int x) //search limited to next x characters

Appendix K-1

Appendix K …..Exception Classes

Following is a list of some of the exception classes found in java.lang. The indentations are an
indication of inheritance with the leftmost of an adjacent pair being the superclass. Beside some
of the exception classes are uses and some (but not all) conditions that would cause that
exception.

Exception

 RuntimeException
 (all below this point are unchecked exceptions)

 ArithmeticException …division by 0, etc.

 IllegalArgumentException …can be used to enforce method preconditions

 NumberFormatException…illegal conversion of String to numeric

 IllegalStateException…can be used to enforce method preconditions

 IndexOutOfBoundsException

 StringIndexOutOfBoundsException … index<0 or index>=String length

 ArrayIndexOutOfBoundsException … index<0 or index>=array length

 NullPointerException …trying to use a variable not referencing an object

 UnsupportedOperationException

If you are not sure of which of these exception to use, you can always use RuntimeException
as in the following code:

 if(…something bad happens…)
 {

RuntimeException e = new RuntimeException(“Your own error message goes
here.”)

 throw e;
 }

Some subclasses of IOException are EOFException … end of file,
 FileNotFoundException,
 MalformedURLException,
 UnknownHostException
All of these are checked exceptions.

Appendix L-1

Appendix L …..An Essay on Interfaces

Students often question the usefulness of Interfaces. This essay presents an interesting
point of view and, hopefully, shows their true utility.

What is the physical interface to the various systems of an aircraft that a pilot sees when he sits
in the cockpit?

The interface consists of all the instruments, dials, gauges, and controls that a pilot sees in front
of him. For example, he doesn’t deal directly with the elevator at the rear of the plane…rather
the yoke (part of the interface) control circuitry that, in turn, moves the elevator and thus makes
the plane go up or down.

Now suppose we are the aircraft manufacturer and we have a number of models that we produce.
When a pilot sits in the cockpit of any of our models, we want him to see essentially the same
interface. In other words, we want the same color scheme, things to be essentially in the same
position, and the controls to work basically the same…we want standardization. Thus a pilot
who has flown one of our models could feel fairly comfortable when moving to another model
he has never flown.

How do we make sure all our models have this common interface? We send the specification for
what the layout of the cockpit is to our design engineers so they will work this basic design into
new models they create.

…. And so it is with software interfaces. We tell the software engineers who create classes for
us, the signatures of the methods we want. (We do this by giving them an interface.) All we have
to do is look at the first line of their class and see if it says implements. We need not look further.
We are assured that they have implemented every method of the interface we specified…
otherwise, their class won’t compile.

Thus we see that the interface does four things for us:

1. It lets us specify the exact method signatures we want in a class that someone else will
design for us… without us having to implement the code.

2. It promotes uniformity if several classes implement this same interface… just as the
airplane cockpit will be uniform between the various models.

3. We can look at the first line of a class and if it says implements, we know the author has
implemented everything we specified… we have no need to look further in the code to
be assured of this.

4. Someone who wants to know how to use a class need not look through what might be
thousands of lines of code that make up the class. It would be much easier to look at the
interface to see how to use the class. Let’s say that another way. It’s much easier to look
at the interface document to see how we interface to the class.

Appendix M-1

Appendix M …..Input from the Keyboard

From Lesson 7 we learned that the Scanner class makes it easy to obtain input from the
keyboard. For versions of Java preceding 1.5, use the following somewhat more complicated
technique (requires importing java.io.*).

 BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
 String s = reader.readLine(); //Reads in a line of text

This code is capable of throwing the checked exception IOException so, either handle with try-
catch or append throws IOException to the method signature. The InputStreamReader class
inputs one byte at a time from the keyboard. BufferedReader allows many bytes to be handled as
a line of text.

**

For versions of Java preceding 1.5 there is an easier class to use for keyboard input, TerminalIO,
however, it is not one of the standard Java classes. Below is a website from which TerminalIO
can be downloaded:

 http://www.bluepelicanjava.com/Download_jar.htm (that’s an underscore between d and j)

Put this jar files in the appropriate folder similar to the following:

 C:\Program Files\Java\jdk1.5.0_04\jre\lib\ext

Two popular programming environments, BlueJ and JCreator will both recognize classes within
jar files placed in this folder. Do not place your jar file into C:\Program
Files\Java\jdk1.5.0_04\lib\ext. This is a different, although similarly named folder.

After importing TerminalIO, use as follows:

KeyboardReader reader = new KeyboardReader();
int i = reader.readInt(); //reads in an integer
double d = reader.readDouble(); //reads in a double
String s = reader.readLine(); // reads in an entire line of text

http://www.bluepelicanjava.com/Download_jar.htm

Appendix N-1

Appendix N …..Using the BlueJ Programming Environment

The BlueJ IDE (integrated development environment) is a free download at
http://www.bluej.org/download/download.html. The following sequence of steps details how to
create a BlueJ project and then classes within that project.

Run BlueJ. From the Project menu item choose New Project.

Fig. N-1

 Fig. N-2

Use the Look In control to
navigate to the desired
location of your project. For
this example we chose the
folder, Temp_Larry.

In the File Name control enter
the name of your project. The
name in this example is
MyFirstProject.

Click the Create button.

Your project now exists. You need to add at least one class to
the project. To add a class click the New Class button.

Fig. N-3

http://www.bluej.org/download/download.html

Appendix N-2

 Fig. N-4

Give your class a name in the Class
Name control. The name in this
example is Tester.

Choose any one of the Class Type
buttons (typically class). It really
doesn’t matter which one since your
instructor will probably have you wipe
out any code it produces so that you
can practice entering it yourself.

Click OK.

 Fig N-5

Enter your code here. (Most instructors
will have you delete the preexisting
code.)

Click on the Compile button when you
have finished entering the code. Any
errors you might have made will be
detailed at the bottom of this screen.

If you exit the screen just above without a successful
compile, the icon for this class will have stripes as

shown to the right.

Fig. N-6

This class icon indicates that it has been compiled
successfully (no stripes). To run your program, right-

click on this class icon (Tester for this example).

Fig. N-7

Appendix N-3

Click on void main(args).

 Fig.N-7

 Fig. N-8

Yet another dialog opens. Click on Ok and
your program will run.

The Terminal Window pops up to display any
output that your program produces. If desired

you can close this window after viewing.

Fig. N-9

See Appendix M for how to make jar files available to BlueJ.

Appendix O-1

Appendix O …..Using the JCreator Programming Environment

The JCreator IDE (integrated development environment) is a free download at
http://www.jcreator.com/download.htm. The following sequence of steps details how to create a
JCreator project and then classes within that project.

Run JCreator. From the

Project menu item
choose New Project….

Fig. O-1

Choose Empty Project
and click the Next

button.

Fig. O-2

In the Name control,
enter the desired name
of your project. Here,

we have chosen the
name MyBigProject.

The default values for
Location, Source Path,

and Output Path are the
normal ones you will

choose. In this example
we have changed these
so that everything gets

stored in
C:\Temp_Larry.

Click the Finish button.

 Fig. O-3

http://www.jcreator.com/download.htm

Appendix O-2

Create a new class
within your project with
Project | New Class. The

dialog to the right will
pop up.

In the Name control,

enter the desired name
of your class.

Most instructors will ask

that you leave the six
check boxes unchecked

so that you can later
enter the code yourself.

Click the Finish button.

 Fig. O-4

In the large area to the
far right you can enter

your code for this class.

 Fig O-5

 Fig O-6

Use these tools to compile your project and then to execute the code.
There are 5 tools here and for reference we will number them from left
to right (1 – 5).

1. Batch compile
2. Compile current file(class)
3. Execute the main method of the current class
4. Compile all classes in a project
5. Execute project…automatically seeks out the main method.

See Appendix M for how to make jar files available to JCreator.

Appendix P-1

Appendix P ….. Time Allocation for Lessons and Tests

Lesson Time Comments
“First day” activities 1 day Pass out books, demonstrate how to log-on, create project folder, learn

how to launch and configure programming environment.
Lesson 1 1 day Enter the “Hello World” program into the computer and execute.
Lesson 2 1 day Illustrate each point of Lesson 2 by modifying the code of the “Hello

World” program of Lesson 1. Assign the exercise on Lesson 2 as
homework. There should be some time to work on this towards the end of
the period and time to check answers.

Lesson 3 2 days Illustrate each point of Lesson 3 by running code. Assign Exercise on
Lesson 3. Grade assignment at end of 2nd day.

Test through Lesson 3 1 day Allow the students to work on the test, take it up at the end of the class,
and let them know when them come back the next day they can make any
corrections they look up that night. Keep beginning students from
becoming discouraged from the start by making this an open-book test.

Lesson 4 2 days Have the students run many of the code examples in their IDE (integrated
development environment) Some of the problems on the exercise must be
finished as homework in order to fit this lesson into one day.

Lesson 5 1 day Run several of the code examples.
Lesson 6 1 day Run several of the code examples.
Lesson 7 1 day Do the first project together in class and assign the “Full Name” project as

a written assignment. Typical grades range from 92 to 51. Problems 5, 9,
11, 12, 2, and 25 were those most often missed. On the day after the test
go over these specific problems.

Test through Lesson 7 1 day At this point still let the students use the book for the test… try to build up
their confidence.

Lesson 8 2 days Many of the code example need to be run on the computer as they are
discussed.

Lesson 9 2 days Be sure to actually run the first two code examples.
Lesson 10 3 days Definitely run the code “menu” example.
Test through Lesson 10 1 day This test may be difficult for some. On the day before the test let the

students look over a copy of the test for about 10 minutes so there will be
no surprises on the day of the test.

Lesson 11 3 days This is the most important lesson so far. Be sure to run several of the code
examples. This is where we begin to acclimate the students to “contest
type problems”.

Lesson 12 3 days Again, run many of the code examples… very important concepts here.
After the 14 regular exercise problems are completed, give the 5 “contest
type” problems as a quiz.

Lesson 13 2 days Emphasize the techniques for storing a char into a String and vice versa.
Have students memorize the ranges of ASCII codes.

Lesson 14 2 days Use chalk board for demo of conversion techniques.
Test through Lesson 14 2 days This will be a lengthy test and it is suggested that it not be an open-book

test. Many students will need two days. Let the first day be an eye-opener
for them so they will study overnight and continue the next day.

Make-up test through
Lesson 14 (Alternate Test
through Lesson 14)

2 days In order not to discourage students who do poorly on the original test, you
might possibly want to give this 16-question re-take. Spend one day
correcting the mistakes from the original and then one day taking this new
test… The questions on this test are mostly what is likely to have been
missed on the original test.

Lesson 15 3 days Spend time on this lesson! This is the most important lesson so far. Have
students enter and test the code for the Circle class. There are 20 questions
on the exercise for this lesson. If the students do poorly on the exercise
there is a “redemptive” quiz that could be given.

Lesson 16 3 days This is a follow up to lesson 15…very important concepts here.

Appendix P-2
Test through Lesson 16 1 day This is primarily a test on objects and classes (lesson 15 and 16).
Lesson 17 3 days Students will find this much easier than the previous lessons on objects.
Lesson 18 3 days Let students know that arrays will be used in nearly all future lessons.
Lesson 19 4 days Be sure to do the programming projects.
Test through Lesson 19 2 days It is suggested that this test be split across two days. Overnight they can

study what they saw on the test and didn’t understand.
Lesson 20 2 days
Lesson 21 1 day
Lesson 22 1 day
Test through Lesson 22 2 days This is a difficult test. Let the students work on it for 30 minutes or so the

first day, take it up, let them study overnight, and then finish the second
day.

Lesson 23 4 days Plan to spend 1 day going over the material in the textbook. The second
day can be devoted to doing and explaining the exercises. The
programming project will also take a complete period if the students are
forced to do most of it themselves. The contest type problems will require
a day. Some of those problems are tricky and will require some
explanation.

Lesson 24 3 days Many lesson from this point on depend on inputting data from a file. Make
sure the students get a good foundation.

Test through Lesson 24 1 day This test is considerably shorter than the others and probably easier.
Lesson 25 3 days Honing skills with file input.
Lesson 26 1 day Actually this lesson can be done in half a period.
Lesson 27 2 days Be sure students keep the BaseClass class. They will paste code from it

into many of their future projects.
Test through Lesson 27 1 day
Lesson 28 3 days The project in this lesson will take an entire day for most students.
Lesson 29 2 days
Test through 29 1 day
Lesson 30 3 days Be sure to do the Monte Carlo project.
Lesson 31 1 day Stress the append and toString methods.
Lesson 32 3 days DeMorgan’s theorem is very important.
Lesson 33 1 day
Test through 33 1 day
Lesson 34 2 days Some important concepts are here.
Lesson 35 3 days
Test through 35 1 day
Lesson 36 3 days This can be done in three days; however, this is such an important lesson

that it might be more desirable to allocate 4 days.
Test through 36 1 day This test focuses strictly on Lesson 36, the inheritance lesson.
Lesson 37 2 days
Lesson 38 2 days
Test through 38 1 day
Lesson 39 2 days
Lesson 40 3 days This lesson on recursion is especially important.
Test through 40 1 day
Lesson 41 6 days Spend one day for each sorting type.
Test on Lesson 41 1 day
Lesson 42 1 day
Lesson 43 3 days ArrayList. Spend at least one day on the project.
Lesson 44 4 days Iterators
Test on Lesson 44 1 day
Lesson 45 3 days These concepts are very important. Be sure to do all three projects.
Test on Lesson 45 1 day
Lesson 46 2 days
Lesson 47 3 days
Test on Lesson 47 1 day
Lesson 48 2 days
Lesson 49 3 days

Appendix P-3
Lesson 50 2 days
Test on Lesson 50 1 day
Lesson 51 3 days
Lesson 52 3 days
Test on Lesson 52 1 day
Lesson 53 2 days
Lesson 54 2 days
Test on Lesson 54 1 day
Lesson 55 3 days
Lesson 56 3 days
Lesson 57 3 days
Test on Lesson 57 1 day

See http://www.bluepelicanjava.com/LessonPlans.htm for eventual posting of detailed lesson
plans.

http://www.bluepelicanjava.com/AppendixP.htm

Appendix Q-1

Appendix Q ….. AP (A & AB) Correlation

Items on the A and AB Exam Page numbers
int, double 2-1
+, -,*, /, ++, --, % 4-2
= =, !=, >, <, >=, <= 8-1, 9-1
&&, ||, ! 8-1
Casting (int), (double) 5-1
String concatenation 3-1
Escape sequences \”, \\, \n 3-1, C-1
System.out.print() and System.out.println() 1-1, 1-2
One-dimensional arrays 18-1—19-1
Two-dimensional arrays 35-1
if, if/else 9-1
while, do/while 12-1
for 11-1
Design new and modify existing classes 15-1—16-7
return types 15-1
public classes, private instance variables, public and
private methods

15-1—16-7

final local variables 5-1
final class, final methods 36-2, 3
static methods 19-3, 20-1
null Nugs-17
this 36-3, 36-11__36-15, 46-6
super 36-1, 3,7, 36-12—36-15
Constructors 15-1
static variables 20-2
Inheritance hierarchies 36-1—36-15
Modifying and creating subclasses 36-1—36-15
Modifying, creating, and implementing interfaces 38-1—38-8
abstract classes and abstract interfaces 38-1
equals method for objects 9-1, 16-2
= = and != for objects 16-2
Comparison of objects with Comparable.compareTo 45-1
Conversion to supertypes and subtype casts 36-4, 45-3—45-4
Package concepts, creating, importing 7-1, 19-3, I-1, M-1
Exceptions concepts; checked and unchecked 37-1—37-11
String 2-1, 3-1
Math class 6-1
Random class 30-1
Object 36-4
ArrayList 43-1
Wrapper Classes; Double, Integer 21-1
Sorting methods 19-3, 41-1—41-17
List interface 42-1
Set interface 46-1
Map interface 47-1

Appendix Q-2
Iterator 44-1
ListIterator 44-2
HashSet 46-1
TreeSet 46-1
HashMap 47-1
TreeMap 47-1
LinkedList 49-1, 50-1
Binary Search and Binary Search Trees 51-1, 52-1
Queues 53-1
Heaps 55-1
Heap Based Priority Queues 56-1
Lookup tables 57-1
Hash tables 57-2
javaDoc AE-1

Appendix R-1

Appendix R… Texas TEKS Correlation, Computer Science I

Texas TEKS (Knowledge and Skills) Student Expectations Page(s)
01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

A. Demonstrate knowledge and appropriate use of
operating systems, software applications, and
communication and networking components.

S-4, U-1

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

B. Compare, contrast, and appropriately use the various
input, processing, output, and primary/secondary storage
devices.

S-5

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

C. Make decisions regarding the selection, acquisition, and
use of software taking under consideration its quality,
appropriateness, effectiveness, and efficiency.

14-4, U-1

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

D. Delineate and make necessary adjustments regarding
compatibility issues including, but not limited to, digital file
formats and cross platform connectivity.

E-2, T-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

E. Differentiate current programming languages, discuss
the use of the languages in other fields of study, and
demonstrate knowledge of specific programming
terminology and concepts.

V-1, V-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

F. Differentiate among the levels of programming
languages including machine, assembly, high-level
compiled and interpreted languages.

V-1, V-2

01. Foundations. The student demonstrates knowledge and
appropriate use of hardware components, software programs,
and their connections.

G. Demonstrate coding proficiency in a contemporary
programming language.

Lessons 1 - 48

02. Foundations. The student uses data input skills
appropriate to the task.

A. Demonstrate proficiency in the use of a variety of input
devices such as keyboard, scanner, voice/sound recorder,
mouse, touch screen, or digital video by appropriately
incorporating such components into the product.

7-1, 45-5, U-1

02. Foundations. The student uses data input skills
appropriate to the task.

B. Use digital keyboarding standards for the input of data. 1-1, 7-1

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

A. Discuss copyright laws/issues and model ethical
acquisition and use of digital information, citing sources
using established methods.

T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

B. Demonstrate proper etiquette and knowledge of
acceptable use policies when using networks, especially
resources on the Internet and intranet.

T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

C. Investigate measures, such as passwords or virus
detection/prevention, to protect computer systems and
databases from unauthorized use and tampering.

47-2, T-2

03. Foundations. The student complies with the laws and
examines the issues regarding the use of technology in
society.

D. Discuss the impact of computer programming on the
World Wide Web (WWW) community.

36-5, V-1

04. Information acquisition. The student uses a variety of
strategies to acquire information from electronic resources,
with appropriate supervision.

A. Use local area networks (LANs) and wide area
networks (WANs), including the Internet and intranet, in
research and resource sharing.

U-1

04. Information acquisition. The student uses a variety of
strategies to acquire information from electronic resources,
with appropriate supervision.

B. Construct appropriate electronic search strategies in the
acquisition of information including keyword and Boolean
search strategies.

8-1, 8-3

05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

A. Acquire information in and knowledge about electronic
formats including text, audio, video, and graphics.

14-4, E-1, E-2, E-3

Appendix R-2
05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

B. Use a variety of resources, including foundation and
enrichment curricula, together with various productivity
tools to gather authentic data as a basis for individual and
group programming projects.

14-4, U-1

05. Information acquisition. The student acquires electronic
information in a variety of formats, with appropriate
supervision.

C. Design and document sequential search algorithms for
digital information storage and retrieval.

39-3, 41-2, 47-1

06. Information acquisition. The student evaluates the
acquired electronic information.

A. Determine and employ methods to evaluate the design
and functionality of the process using effective coding,
design, and test data.

7-3, 11-5, 15-8, 16-
6, 17-6, 23-5, 24-5

06. Information acquisition. The student evaluates the
acquired electronic information.

B. Implement methods for the evaluation of the
information using defined rubrics.

U-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

A. Apply problem-solving strategies such as design
specifications, modular top-down design, step-wise
refinement, or algorithm development.

27-3, 27-4, L-1, 25-
6, 30-6

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

B. Use visual organizers to design solutions such as
flowcharts or schematic drawings.

48-1, 48-2

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

C. Develop sequential and iterative algorithms and code
programs in prevailing computer languages to solve
practical problems modeled from school and community.

25-6, 26-2, 27-4,
38-7

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

D. Code using various data types. 2-1, 8-1, 10-1, 18-1,
D-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

E. Demonstrate effective use of predefined input and
output procedures for lists of computer instructions
including procedures to protect from invalid input.

37-1, 38-1, 42-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

F. Develop coding with correct and efficient use of
expressions and assignment statements including the use of
standard/user-defined functions, data structures,
operators/proper operator precedence, and
sequential/conditional/repetitive control structure.

4-1, 6-1, 8-1, 9-1,
10-1, 12-1, H-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

G. Create and use libraries of generic modular code to be
used for efficient programming.

6-1, 19-3, 21-1, 23-
1, 31-1, 37-1, 46-1,
47-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

H. Identify actual and formal parameters and use value and
reference parameters.

15-2, 15-3, 34-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

I. Use control structures such as conditional statements and
iterated, pretest, and posttest loops.

9-1, 10-1, 11-1,
12-1

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

J. Use sequential, conditional, selection, and repetition
execution control structures such as menu-driven programs
that branch and allow user input.

9-1, 7-1, 10-1,

07. Solving problems. The student uses appropriate
computer-based productivity tools to create and modify
solutions to problems.

K. Identify and use structured data types of one-
dimensional arrays, records, and text files.

18-1, 19-1, 24-1,
F-1

08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

A. Participate with electronic communities as a learner,
initiator, contributor, and teacher/mentor.

36-5, U-1

08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

B. Demonstrate proficiency in, appropriate use of, and
navigation of LANs and WANs for research and for sharing
of resources.

47-2, T-2, U-1

Appendix R-3
08. Solving problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

C. Extend the learning environment beyond the school
walls with digital products created to increase teaching and
learning in the foundation and enrichment curricula.

14-4, U-1

08. Solving Problems. The student uses research skills and
electronic communication, with appropriate supervision, to
create new knowledge.

D. Participate in relevant, meaningful activities in the
larger community and society to create electronic projects.

36-5, U-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

A. Design and implement procedures to track trends, set
timelines, and review/evaluate progress for continual
improvement in process and product.

39-1, 41-2, 41-4,
41-6, 41-9

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

B. Use correct programming style to enhance the
readability and functionality of the code such as spacing,
descriptive identifiers, comments, or documentation.

1-2, 2-2, 15-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

C. Seek and respond to advice from peers and
professionals in delineating technological tasks.

36-5, U-1

09. Solving problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

D. Resolve information conflicts and validate information
through accessing, researching, and comparing data.

45-1, 45-5, U-1

09. Solving Problems. The student uses technology
applications to facilitate evaluation of work, both process and
product.

E. Create technology specifications for tasks/evaluation
rubrics and demonstrate that products/product quality can
be evaluated against established criteria.

14-4, U-1

10. Communication. The student formats digital information
for appropriate and effective communication.

A. Annotate coding properly with comments, indentation,
and formatting.

1-2, 2-2, 27-3

10. Communication. The student formats digital information
for appropriate and effective communication.

B. Create interactive documents using modeling,
simulation, and hypertext.

9-3, 11-5

11. Communication. The student delivers the product
electronically in a variety of media, with appropriate
supervision.

A. Publish information in a variety of ways including, but
not limited to, printed copy and monitor displays.

14-4, U-1

12. Communication. The student uses technology
applications to facilitate evaluation of communication, both
process and product.

B. Seek and respond to advice from peers and
professionals in evaluating the product.

36-5, U-1

12. Communication. The student uses technology
applications to facilitate evaluation of communication, both
process and product.

C. Debug and solve problems using reference materials
and effective strategies.

14-4, A-1 – U-1

Appendix S-1

Appendix S ….. A History of Computers

What was the first computer and who built it? Depending on who you ask, you will likely get a
variety of answers. Frenchman Blaise Pascal built a gear-driven counting machine in 1642 when
he was only eighteen years old. His machine could only add and subtract; however, it was
revolutionary for its time. Pascal went on to make numerous contributions to the field of
mathematics.

In the early 1820’s Charles Babbage, an
Englishman, began his “Difference Engine”
and worked on it for ten years before
abandoning it for a much better design, the
“Analytical Engine”. Due to a lack of
funding and the inability of the technology of
the times to produce parts to exacting
tolerances, neither of these mechanical
machines was ever completely finished. It is
widely acknowledged today that they would
have worked.

Babbage enlisted the help of Ada Lovelace,
daughter of English poet Lord Byron, to
devise ways to program this first general-
purpose (although non-existent) computer.
Actually, her role was mostly in the
generation of publicity for his projects. There
is a computer language named ADA in honor
of this first programmer. The language was
originally mandated for use in U.S. military
equipment, but never received widespread
acceptance by the general programming
community.

Fig S-1. Part of Babbage’s Difference Engine.

Fig S-2.The ENIAC in operation. This photo
shows about half of the machine.

During World War II the U.S. military was in
dire need of a better and faster way of creating
“trajectory tables” for its various big guns. These
tables, each calculated by hand, required many
hours of tedious work by teams of
mathematicians. The calculations took into
account the angle of the gun, wind speed and
direction, temperature, barometric pressure,
humidity, and type of shell. With an increasing
number of new types of guns and shells being
produced, those human “computers” as they
were called, were simply overwhelmed. A
newer, faster method was badly needed.

Appendix S-2

Out of this necessity was born the first electronic digital computer, the ENIAC. It was finally
finished in 1946 (the war was over by then) and was a monster consisting of 19,000 vacuum
tubes and 1,500 relays. It completely occupied a large room, weighed several tons, and
consumed enough electricity to power a small town. Unfortunately, because of the unreliability
of vacuum tubes, it was in constant need of repair. In spite of this, it was still one of the most
valuable assets of the U.S. in the early days of the cold war with the Soviet Union.

Few people today would recognize the ENIAC as a computer. It had no “keyboard” and no
“screen” and was programmed by rewiring (“hard-wiring” as evidenced by the patch cords in
Fig. S-2) the machine and flipping large arrays of switches. This was a time consuming, tedious
task that resulted in many “programming” errors.

It was John von Neuman who suggested that hard wiring be abandoned and for the computer’s
program to be stored in memory along with the data. This was a radical idea for its day, but the
technique is still used in modern computers. Von Neuman was considered by many colleagues to
be the “smartest man” of the twentieth century and there are many anecdotes of his amazing
mental abilities to support that belief.

At the time the ENIAC was being developed, a young
Navy Lieutenant, Grace Hopper, became involved with
the ENIAC and related projects. She was one of the first
to program electronic digital computers. In fact, she
coined the phrase “computer bug.” It seems that her
group’s computer malfunctioned and a moth was
discovered with its wing blocking the contacts of a relay.
After that, whenever a program did something
unexpected she would quip, “Must be a bug in the
machine,” and the term stuck.

Grace Hopper was a national treasure and recognizing
this, the Navy allowed her to stay on active duty well past
the mandatory retirement age of 65. She was 80 when she
retired in 1986. She had appeared on many TV shows,
including two appearances on CBS’s 60 Minutes. She
always responded to a greeting from hosts with, “Here,
have a nanosecond” (a nanosecond is one billionth of a
second) while handing them a piece of wire just a little
shorter than a foot. That was her trademark and was her
way of introducing a discussion of computer technology.
She would explain that the speed of electrical devices is
inherently limited since electrical signals take
approximately a nanosecond to travel the length of the
wire. She would point out that that’s one of the reasons
for miniaturization.

Fig. S-3. Grace Hopper was the
oldest person in the Navy at her time
of retirement in 1986 near the age of
80. She was a frequent guest on TV
shows where she handed our her
trademark “nanoseconds”.

“Amazin Gracie” (as she was reverently referred to) always spoke her mind and never avoided
controversy. She was slightly abrasive, a chain smoker, and most memorable, a brilliant
conversationalist. Her programming abilities should not be overlooked, however. In her early
days she was noted for her development of one of the first compilers.

Appendix S-3

Your author had a chance encounter with “Amazin Gracie” in 1986 just
shortly before her retirement. I was returning with my family from a
vacation and had a lengthy 6 hour lay-over at DFW airport in Texas
before catching our final flight back to Corpus Christi, Tx. Killing time
by watching the throngs of people hurrying by, I noticed a diminutive
elderly lady in a Navy uniform slowly trudging along carrying two heavy
bags that were nearly dragging the floor. I recognized her instantly and
decided to offer to help her with the bags. I approached her with, “Excuse
me, ma’am, are you Grace Hopper?” She initially said nothing, set down
her bags, reached into her purse, and said, “Here, have a nanosecond.”
Well, I nearly died right there. Before I could compose myself a number
of other people recognized her and she was mobbed, all the while
graciously handing out “nanoseconds”. So, my encounter with Grace was
cut short…or, so I thought as I watched her slowly make her way down
the concourse and out of sight, but I was happy. I had my “nanosecond”.

Time passed and with about an hour before the departure of our flight, we
moved to the seating area of our gate. Guess who was already there
waiting for the same flight? There she was smoking one cigarette after
another. She invited me to sit with her and we chatted for the better part
of an hour. I was privileged to hear several interesting stories about the
early development of the computer. She had opinions on just about every
thing including tactics of the British Navy in the recently completed
Falklands war with Argentina. I mostly just listened and consider that
hour as one of my favorite memories. The “nanosecond” wire was and
continues to be a prized possession. It was the best vacation I ever had.

Fig S-4. Grace Hopper’s “bug”
preserved in the Smithsonian
Institute in Washington D.C.

The first commercially available personal computer was the
MITS Altair. Its heyday was from the mid to late 1970’s and
would not have been recognized as a computer by most people
today. It had no keyboard and no screen. Input was done in a
binary fashion with switches. A switch in the “up” position was
considered a “1” and “down” was a “0”. Output was done by
manually reading a series of lights. If a light was “on”, that
indicated a “1”, etc. The Altair was initially available only as a
kit and had to be assembled by the purchaser. Consequently, it
was mostly only electronic enthusiasts that bought these
machines.

Fig S-5. The MITS Altair

Fig. S-6. Bill Gates

Bill Gates, one of the world’s richest men, arrived on the
scene along with the Altair as a penniless, nerdy, college
dropout when he was hired to write software for the Altair.
Gates then went on to found Microsoft, a company that
eventually became one of the world’s largest corporations.

In the early 1980’s Gates and the fledgling Microsoft
company were fortuitously hired by the giant mainframe
computer company, IBM, to write an operating system for
the new IBM PC. The operating system was called MS-DOS
and prevailed as “the” operating system until the advent of
Windows in the early 1990’s.

Appendix S-4
What is an “operating system”? The operating system is the underlying software that makes the computer
operate. For example, when you do something as simple as type on the keyboard, some type of software must
process that input, send it to the right place, and then create the appropriate response. Mouse input, network
activity, screen output, and a host of other things are also fundamentally handled by the operating system. A big
responsibility of the operating system is managing input and output (I/O) relative to the various disks in the
computer. In fact, one of the first operating system for a PC was (MS-DOS), where DOS stands for “disk
operating system”. The old DOS based operating systems were “character” based with regard to their screen
displays. In those systems a hardware ROM (read only memory) processed each character to be displayed and
then generated the appropriate dots (pixels). It was this electronic ROM and associated circuitry that ultimately
turned on and off the pixels on the screen.

Contrast this to the more modern GUI operating systems. (GUI mean graphical User Interface.) The Apple
Macintosh had the first GUI system. Microsoft’s version of the GUI is called Windows and has evolved from
Windows 3.0, Windows 95, Windows 98, Windows Millennium, Windows NT, Windows 2000, Windows XP,
and finally into Windows Vista at the time of this writing. (Stay tuned for more to come.)

The GUI is not character based, rather, it is graphics based. Software generates the “dots” (pixels) that make up
absolutely everything on the screen. Every time the view on a screen changes the computer has to manage every
single pixel as to its position and its color. This puts a tremendous strain on the system since for a moderately
high resolution screen (1024 pixels across by 768 pixels down) there are 786,432 pixels. This is why it’s
desirable to have as fast a computer as possible. It should be mentioned that much of this burden is handled by
specialized graphics circuitry rather than the CPU (central processing unit) itself.

In the early days of the PC (late 1970’s and early
1980’s) the major players were Radio Shack, Apple, and
IBM. It is interesting to note that at the time of this
writing, (2004) none of these companies are among the
top three computer vendors. Those spots are reserved for
Dell, Compact, and Gateway.

The Radio Shack TRS 80 Model III was very popular in
the early 1980’s. It featured a “complete package” in
that the computer, disk drives, and keyboard were all
integrated into a single package. It had the limitation of
not being able to “add-on”. No slots were available.

The Apple IIe was a huge seller in the 1980’s and had
slots into which third-party circuit boards could be
inserted. This spawned an industry of third-party add-on
products for this machine.

Fig S-7. Radio Shack TRS 80 III

Fig S-8. Apple IIe

The story of the Apple computer is truly a Cinderella
story. Two Steve’s (Steve Jobs and Steve Wozsanic)
developed the first Apple in a garage on a shoe-string
budget. Jobs is still at the head of Apple and had the
business acumen to lead the company to success. The
other Steve, “The Woz” as he is called, was an
electronics genius, and in the early days, confounded the
“experts” by developing a floppy disk drive that was
simple and inexpensive to manufacture. This, together
with the Apple’s color graphics, made it an instant hit.

Fig S-9. Steve Wozniak (left) and

Steve Jobs

Appendix S-5

The awkward time of computing was between the
development of ENIAC (mid to late 1940’s) and the
development of the modern modern PC (late 1970’s to
present). In the 1960’s and 1970’s an education in
computer science involved the entry of programs via a
key-punch system. This involved a machine of about
the same weight as a refrigerator that punched holes in
cardboard “IBM cards”. Another machine, a card
reader, typically the size of two refrigerators, read the
holes and sent the appropriate messages to the
computer. The computer itself was usually housed
behind glass walls where white-coated attendants did
its bidding.

What you as a Java programmer would consider one
line of code was all that would go on a single card.
Your “program” was then a stack of these cards.
Perish the thought that you would get your stack out of
order!

Fig S-10. A key-punch machine

Jokes of that era often included
the punch line, “Do not bend,
spindle, fold, or mutilate.” This
admonition often accompanied
IBM cards containing data. The
card readers would often get
confused if the cards were
damaged in any way.

Fig S-11. A punch card (approximately 8” X 3”)

Punch cards were never used with the PC. With the
advent of the PC in the late 1970’s, data was
consistently being stored on disk. First, there were
floppy disks. They went through an evolution in which
a large 5.25” floppy (they were truly floppy then if
you waved them around) held only 160kb (kb means
kilobyte; 1,000 bytes) of memory. Floppies today are
3.5” across and hold 1.4mb (1,400,000 bytes).

Hard disks are the main storage devices on computers
and have also gone through quite an evolution. In the
early 1980’s a hard disk having a storage capacity of
only one megabyte (106 bytes) cost $2000. Today,
hard disks having a storage capacity of 100gb (gb
means gigabyte; 109 bytes) cost around $150.

Fig S-12. Old style floppy (left) and
modern version

Appendix T-1

Appendix T ….. Viruses

Plain and simple, the act of creating a virus is an act of vandalism. It is an intentional, malicious
act with the end result being the destruction of data on the target machine or the disruption of
services. Since it is a crime, several hackers who have created viruses have been prosecuted and
handed stiff prison sentences.

What is a virus?
A computer virus is basically a program that runs just like your own Java code. Whereas your
Java code does something useful (hopefully), virus code does something destructive, or at the
very least, something disruptive or annoying. All viruses have two basic features:

• They have the ability to replicate themselves, i.e. to place copies of themselves onto other
disks, email, or the Internet.

• They contain a “payload”, i.e. the ability to perform some harmful, disruptive, or
annoying action.

What are the methods by which viruses are spread?

• Floppy disks… inserting an infected floppy into a disk drive
• Email…opening an infected email
• Internet… opening infected pages on the Internet
• Network… just having your computer connected to an unprotected network poses a risk.

What are the various categories of viruses?
At last count in 2003, there were over 80,000 known types of viruses. They break down into the
following categories:

• Trojan horse viruses… This type of virus masquerades as a benign application. In the
strictest sense they are not viruses since they do not replicate; however, they can be just
as destructive.

• Macro viruses… These viruses use another application’s programming language to
replicate and do their mischief. Microsoft Word and Excel documents are popular targets
for such viruses.

• Boot sector viruses… These viruses reside in the boot sector or partition table of a disk.
Infection occurs when a computer is booted from a floppy having a boot sector virus.

• Internet worms… These viruses are complete, self-contained programs that are able to
replicate copies of themselves to other computers. The spread of these viruses is typically
done through network connections and/or email.

• File viruses…These viruses infect executable programs (typically, files with extension
.com or .exe). The action of these viruses is to replicate and spread by infecting other host
programs. They often overwrite a host program and destroy parts of the original code.

• Email hoax… Strictly speaking, these are not viruses but are often referred to as such. A
typical email hoax message will say something like, “I may have accidentally sent you a
virus in my last email. Delete such-and-such file from your hard drive to remove the
virus”. If you follow this advice and delete the file, you will likely do permanent damage
to your operating system.

How can we protect against viruses?

• Have anti-virus software installed on your computer and/or servers in your LAN (local
area network).

Appendix T-2
• To stop MS Word macro viruses, use .rtf (rich text files) instead of .doc files when using

Microsoft Word. An RTF file preserves all text formatting but does not contain macros.
• To stop MS Excel macro viruses, use .csv files rather than .xls files. CSV files preserve

all formatting of the spreadsheet but do not contain macros.
• Do not open suspicious emails.
• Do not allow the sending or receiving of .exe or .com files as attachments to emails. A

better solution is to use ZIP software to send these files as attachments. The receiving end
can use PKUNZIP to unzip the file.

• Change the boot sequence on your PC so that the hard drive boots first instead of the
floppy. This prevents floppies infected with boot sector viruses from infecting the
computer.

• If Windows Scripting Host (WSH) is not used, it should be turned off.

Computer ethics and etiquette:
It is unethical to produce and/or distribute computer viruses; besides, it’s against the law. There
are some other things that we should also be mindful of when dealing with computers, computer
data, networks, and the Internet:

• Don’t plagiarize other’s work, whether it is data or code. Always receive permission and
credit any work that originates from others.

• Don’t use computer resources without permission.
• Keep your own work and data secure so as not to present a temptation to others.
• Obtain permission before using copyrighted materials.
• Don’t download music without permission or compensation.
• Don’t eavesdrop on the communications of others.
• When standing next to someone in the act of entering their user name and password,

always look away as they make these entries.
• Recycle old computers and components that would otherwise be discarded.
• On networks with limited bandwidth, don’t “hog” these resources by continually playing

music from Internet “radio” stations.
• When you install software, make sure that you adhere to the license agreement.
• Do not steal someone’s “identity”, i.e., do not pose as someone else in any electronic or

other communication.

Appendix U-1

Appendix U …..Enrichment Activities

Use of LANs and WANs
LAN stands for local area network and WAN stands for wide area network. Likely, in your
school you have a LAN. Enlist the help of your instructor in setting up shared folders on various
computers and for how to transfer data across the network between computers.

• Investigate the use of passwords.
• Investigate the setting of various levels of permissions.

Using a scanner and OCR software
Prepare a document using any word processor and print it. Use a scanner to produce an image
file of the printed document. Then, using OCR (optical character recognition) software turn the
image file back into a character based document.

• Investigate the various image formats (jpg, gif, etc) that are most suitable for this task.
• Investigate the use of exotic fonts and report on their effect on the success of the OCR

process.
• Write a short essay on the difference between a text based document and an image based

document even though they appear identical on the screen.

Software specifications
Pretend that you are a journalist for a technical magazine and that you have been given the
assignment of reporting on the various software packages for a Binary File Editor.

• Do a search for “Binary File Editor” on the Internet.
• Prepare a chart of all such products listing the source, features, and costs.
• Prepare a summary of the relative cost-effectiveness of each product. Prepare a rubric as

a means of your evaluation.
• Interview other members of your class who are also doing this project and incorporate

their advice and opinions on these products into your report.

Publish information
Using the results of the Software specifications project above publish the information in a variety
of ways including:

• Web pages (use MS Front Page, etc. to produce pages)
• Printed report
• Screen display
• Posters

Electronic Communities
Do an Internet search for discussion groups and Forums. Find a question-and-answer forum
concerning Java. Participate in the forum by:

• asking questions
• responding to questions to which you know the answer

Prepare a report of your forum activities. (Several good java forums exist at
http://www.bluepelicanjava.com/forum.htm)

Appendix V-1

Appendix V …..Computer Languages

We will examine several programming languages here and compare them to Java. First, let’s
look at a code fragment in Java:

 for(int j = 0 ; j <= 20; j++)
 {
 switch (a)
 {
 case 1:
 b = 22;
 break;
 case 4:
 b =27/(c+1);
 if (p > = 2)
 {
 System.out.println(“Answer is ” + b);
 }
 else
 {
 System.out.println(“Answer is ” + (b * c));
 }
 break;
 default:
 b =19;
 }
 }

C++
In the C++ (pronounced C plus, plus) language the equivalent code is written as:

 for(int j = 0 ; j <= 20; j++)
 {
 switch (a)
 {
 case 1:
 b = 22;
 break;
 case 4:
 b =27/(c+1);
 if (p > = 2)
 {
 cout << “Answer is ” + b;
 }
 else
 {
 cout << “Answer is ” + (b * c);
 }
 break;
 default:
 b =19;
 }
 }

For this particular example, the only difference is with how we print. To be sure, there are many
other differences. In C++ there is no native String class; one has to be imported. None of the
classes we use in Java are present in C++ although many equivalent classes are provided.

Appendix V-2

Whereas in Java we import with import ClassName; , in C++ the syntax is
#include<ClassName.h> . And there are many other differences. The creation and use of classes
is considered to be more straightforward in Java than in C++.

Visual Basic
Many consider Visual Basic to be the most powerful of all programming languages, as well as
the easiest to use. It’s only limitation in the past has been that it was strictly intended for the
Windows platform. With the advent of VB.net, the distinction between development for
Windows, general C++ code, and web applications has blurred. Below is the equivalent VB code
corresponding to the previous Java example:

For j = 0 to 20

 Select Case a
 Case 1

 b = 22
 Case 4
 b =27/(c+1)

 If p > = 2
 lblBox1.Text = “Answer is ” + b

 Else
 {
 lblBox1.Text = “Answer is ” + (b * c)
 }

 Case Else
 b =19
 End Select

Next j

Visual Basic is not case sensitive and requires no semicolons or braces. Most programmers find
this very liberating.

Java Script
Java Script is typically used inside web pages. JS code looks just like regular Java except where
we use specific commands that relate to items displayed by a web browser. For example, in the
code below we recognize it’s Java script by the presence of “JavaScript”. Notice, that instead of
methods, JS has functions. The variable my_combo below is a reference to a drop-down list box
on a web page and the code in the function responds when a particular item in that list is clicked
with a mouse.

<Script Language="JavaScript">
<!--
 function GoToDrive(my_combo)
 {
 var game_value=my_combo.options[my_combo.selectedIndex].value
 document.location.href = "Drives.asp?gameId=" + game_value
 }
//-->
</SCRIPT>

Appendix V-3

Assembly and Machine Language
Assembly language is called a low level language. It is “low level” in the sense that it is “closer”
to the native language of the microprocessor itself. It is, however, much more difficult and
tedious to program than one of the higher level languages like Java or Visual Basic. Following is
an example of some assembly language code for the old Apple IIe that used a 6502
microprocessor. More modern assembly languages are more complex but similar.

Memory Address Machine Code Assembly Language
0300 A9 12 LDA #$12
0302 A9 34 LDA #$34
0304 A9 56 LDA #$56
0306 EA NOP
0307 EA NOP

The program above will successively load the hex values $12, $34, and $56 into accumulator A
and then execute two NOPs (no operation). Note that the machine code instruction A9 12 can be
written in assembly language as LDA #$12. The # sign stands for “immediate mode”; that is, the
machine code instruction A9 12 means “Load accumulator A with the hex value $12.” Assembly
language instructions are easier for a person to understand than the corresponding
machine code. However, the microprocessor can only understand machine code.

A single line of Java code may equate to hundreds or even thousands of lines of machine code.
The act of compiling our Java programs converts our code into machine code.

Compiled versus Interpreted languages
Java is a compiled language, i.e., it is converted into machine code. Once in machine language,
then we execute the code. To understand what an interpreted language is, let’s suppose for a
moment that Java is such a language. If this were true, then every time our program runs and
encounters, for example, a println, then the interpreter would have to look up what this command
means from a table of commands. Every single command would have to be “looked-up”. Now,
suppose we have a loop that executes one million times. Every single command in that loop is
looked-up in the table on all one million iterations of the loop. Naturally, interpreted languages
are typically very slow.

In the early days of the PC, nearly all languages were interpreted versions of BASIC. If compiled
languages are better, why did the industry begin with interpreted ones? The answer lies in the
complexity and difficulty of producing a good compiler. It takes dedication and skill far beyond
that of the ordinary programmer to produce a good compiler.

Appendix W-1

Appendix W ….. Tree Definitions

 Fig W-1

If you find the terms tree, root, etc. confusing
when trying to compare them to a real,
physical tree, you must think of a tree as
having its root at the top, and with the tree

Tree Terms
Node
Root
Parent

Child

Descendents

Ancestors

Edge/Branch
Path
Path Length
Depth/Level

Height
Leaf
Interior Node
Subtree

Heap

Traversal

Complete Binary Tr

Full Binary Tree

56
50
growing downward.

52
25
Tree

D
A
T
T
n
p
T
is
b
T
d
T
a
T
A
T
T
a

H
A
A
A
a
A
c
T
e
tr

ee A
m
A

74

Such a tree is depicted to the left; in fact, it is a
Binary Search Tree. We will use this example
of a tree in explaining the definition of tree-
54

terms below.

escription and examples
n item (data) stored in a tree….50, 25, 56, etc.
op node in a tree, level 0. It has no parent…. 50.
he parent of any node is a node one level up and connected to the
ode. A node has only one parent… 56 is the parent of 74, and 50 is the
arent of 25.
he child of a node is one level down and connected to the node… 52
 a child of 56. A node can have at most only two (hence the term
inary tree) child nodes.
he descendants of a node are its children, their children, etc… The
escendents of 56 are 52, 74, and 54.
he ancestors of a node are its parent, its parent’s parent, etc… the
ncestors of 54 are 52, 56, and 50.
he line connecting a parent and a child.
 sequence of branches connecting a child down to a descendant.
he number of branches in a path…Path length between 50 and 54 is 3.
he level of a node (depth) is equal to its path length. Thus, the root is
t level 0…74 is at level 2.

eight of a tree is the length of the longest path…3.
 node that has no children… 25, 74, and 54.
 node that is not a leaf. It has at least one child….50, 56, 52.
 tree that results from considering any node (and all its descendants)

s a new tree.
 heap is a binary tree in which each node is greater than its two

hildren. The sample tree above is not a heap.
he traversal of a tree involves the movement between nodes and the
ventual visitation of all nodes. There are four different types of
aversal; preorder, inorder, postOrder, and level Order traversals.
 tree that has no gaps except possibly on the lowest level, and any
issing leaves would be confined to the far right side.
 full tree has the maximum number of nodes allowed for its height.

Appendix X-1

Appendix X …. Compiling and Executing Without an IDE

All of the discussion below assumes that you are using Windows 2K or XP pro. At the end of
this appendix, mention is made of how you would adapt the procedures to Windows 98.

The easiest way to compile and then run your Java classes is to use an IDE such as BlueJ,
JCreator, etc. It is possible, however, to create your source code, compile it, and run without
having any Java IDE on your machine. You must, of course, have downloaded and installed the
Java SDK (software development kit) from Sun Microsystems. For the remainder of this
discussion we will assume that this has been done and it was installed at the following location
on your hard drive:

 C:\Program Files\Java\jdk1.5.0_04

If this is not correct for your installation of Java (perhaps as a result of the version number being
different), then you will need to make the appropriate adjustments to the paths mentioned below.

Creating a source file:
First, let’s create a Java source file for a simple “Hello World” class. Launch the text editor
Notepad and enter the text shown below. (Navigate to Notepad via: Start | (All) Programs |
Accessories | Notepad)

 public class Hello
 {
 public static void main(String args[])
 {
 System.out.println(“Hello World”);
 }
 }

Before we save this file, let’s set up a folder in which to save it. For this discussion, we will
assume your name is Larry and that your instructor has you put your files in the folder
C:\Temp_Larry. Create the sub-folder C:\Temp_Larry\HelloWorld and save your file there as
Hello.java. Get into Windows Explorer and confirm the location and file name. If it was
accidentally saved as Hello.java.txt, as is often the case, you must rename it to Hello.java.

At this point we are going to digress and investigate the contents of the C:\Program
Files\Java\jdk1.5.0_04\bin folder. It has a number of files in it, but four are of particular
interest to us:

javac.exe……. This is a file that will compile our Hello.java source file and
produce a corresponding class file, Hello.class .

java.exe…….. This is the file that will “run” the Hello.class file and produce
output to the console screen.

javaw.exe……This serves the same function as java.exe except that it gets rid of
the console window while running a GUI application. Any print
statements encountered by javaw.exe are simply ignored. (In many
cases the console serves only as a debugging aid.)

javaDoc.exe… This file produces web based (html files) documentation. See
Appendix AE.

Appendix X-2

The command prompt:
Now, go to a console screen using the sequence Start | Run | cmd . This is typically a black
screen with white letters and is known by various names such as “the DOS screen”, “the
command prompt”, “the command line screen”, etc.

Change directory (cd):
At this point we are going to issue a cd command at the command prompt (the location of the
blinking cursor) so as to change the “current folder”. This will make it easy for the computer to
find the files it needs if we are “parked” in the folder in which those files reside. In other words,
the “current folder” is where the computer will first look for files that we enter as part of a
command line. The command cd means “change directory” (folder). At the command prompt,
issue this command:

 C:\ > cd C:\Temp_Larry\HelloWorld You enter the bold part. The non bold part
 is the on-screen prompt.

If all went well, you will see a new command prompt as follows:

 C:\Temp_Larry\HelloWorld >_

This indicates that you are, indeed, “parked” in the HelloWorld folder where your Hello.java
source file is located. Thus, when we issue a command that references Hello.java the computer
will find it.

Compile:
Let’s compile our file using the javac.exe file in the bin folder mentioned above. Here is the
command:

 C:\Temp_Larry\HelloWorld > javac Hello.java

Unfortunately, this won’t work because the computer is unable to recognize or find javac. It has
no idea where to find this file. The following will work where we explicitly give the full path to
the javac.exe file:

 C:\Temp_Larry\HelloWorld > C:\Program Files\Java\jdk1.5.0_04\bin\javac Hello.java

You can look in the HelloWorld folder and see that a new file has just been created, Hello.class.
This is the result of the compilation. You could, of course, use Windows Explorer to look in the
folder, or from the command prompt, you could issue the command dir and get a listing of the
files. (dir means “directory” which is the old-fashioned term for “folder”).

Setting a Path:
Entering long path names can become quite inconvenient. If we have much more activity with
this session of the command prompt screen, we need a shortcut so as to avoid the necessity of
entering these lengthy paths. At the command prompt, enter the Path that gives the location of
the javac.exe and java.exe files:

 C:\Temp_Larry\HelloWorld > Path = C:\Program Files\Java\jdk1.5.0_04\bin

We can now shorten the command necessary to compile our file:

Appendix X-3

C:\Temp_Larry\HelloWorld > javac Hello.java

The file javac is now easily found because the Path we set tells the computer to look in that
folder for any exe, com, or bat files we might subsequently run from this session of the command
prompt screen. Now, execute the main method in our compiled file by issuing the following:

 C:\Temp_Larry\HelloWorld > java Hello

Notice in this last command line that we don’t specify the name of the class file (which is
Hello.class); rather, we give the name of the class, which is just plain Hello. The code will
execute and any output will appear on the black DOS prompt screen, just as it would in the
console window of our favorite IDE.

You should be aware that the setting of the Path command only persists while we are in the
current session of the DOS prompt screen. If this window is closed and is then subsequently
reopened, the setting will be lost.

Setting a permanent Path:
There is, however, a way to make the Path setting permanent via the following sequence:

 Start | (Settings) | Control Panel | System | Advanced Tab | Environment Variables

Create a new User Variable for <your logon name> called Path with value C:\Program
Files\Java\jdk1.5.0_04\bin. Typically, this takes effect without the necessity of a reboot, but if
things don’t work immediately, try restarting the computer. This Path setting augments the Path
System Variable. If you want this new Path to affect all users and if your logon name has
Administrative permission, instead, edit the Path variable in the System Variable section by
appending the following to what it already has:

 ; C:\Program Files\Java\jdk1.5.0_04\bin

If you set the System Variable, reboot the computer. In either case you will find this new Path is
now in effect and is permanent.

Related topics:
Two closely related subjects are the creation of packages and the setting of the classpath
variable. See Appendix I for details on these topics.

A note concerning Windows 98:
All of the above is true with the following three exceptions:

1. Instead of using cmd to access the DOS prompt screen, use command.

2. Long path or file names (exceeding 8 characters in length) will need to be

enclosed in quotes.

3. For permanent Path settings you will need to add the desired Path to the
Autoexec.bat file since this cannot be done within the Win 98 System dialog.

Appendix Y-1

Appendix Y… Bytes, Kilobytes, Megabytes, & Gigabytes

Recall from Lesson 14 that computer memory is organized into bytes and that a byte is 8 bits (for
example, 10011011). The number of bytes of RAM (random access memory, a computer’s main
memory) is always given by powers of two. Certain powers of two have been given special
names recognized throughout the industry:

Name Abrev Actual Number Power of 2 Approximation
Kilobyte kb 1,024 210 1,000 (one thousand)

Megabyte mb 1,048,576 220 1,000,000 (one million)
Gigabyte gb 1,073,741,824 230 1,000,000,000 (one billion)

 Table Y-1

In the chart above, it is the approximate value that people normally think of and use most often.
It is easier to remember than either the “Actual Number” or “Power of 2”.

The following table shows some other common, often used megabyte values.

Name 2x Exact Value
16 meagbytes 224 16,777,216
32 megabytes 225 33,554,432
64 megabytes 226 67, 108,864
128 megabytes 227 134,217,728
256 megabytes 228 268,435,456
512 megabytes 229 536,870,912

 Table Y-2

Appendix Z-1

Appendix Z… Formatting with the DecimalFormat Class

Use the following test class to demonstrate the abilities of the DecimalFormat class. Note the
required import.

import java.text.*;
public class Formatting
{
 public static void main(String args[])
 {
 double testNum = 5847.2268;
 String pattern = “##,###.##”;
 DecimalFormat df= new DecimalFormat(pattern);

 System.out.println(df.format(testNum)); //5,847.23
 }
}

The following table shows the output for various combinations of String pattern and double
testNum:

pattern testNum Output
“###,###.##” 5368.8742 5,368.87
“###,###.##” 5368.876 5,368.88
“###,###.00” 38 38.00
“#,##0.##” .9881 0.99
“$###,##0.00” 8232.6 $8,232.60
“$###,##0.##” .9827 $0.98
“$###,##0.##” .997 $1
“#####00.00###” 3.8749879 03.87499
“##0.##%” .345667 34.57% (see note below)
“+” .2245 +0
“+##” 36.889 +37
“##” 36.889 37
“##.##” -480.0934 -480.09
“+##.##” -480.0934 -+480.09 (blindly prints +)
“00000.00” 45.97665 00045.97

When using the percent sign, the number is first multiplied by 100, and
then the pattern is applied.

Use the applyPattern method in the following way to apply a new formatting pattern after a
DecimalFormat object has already been created.

DecimalFormat df = new DecimalFormat(“000.##”);
System.out.println(df.format(12.7391)); //012.74
df.applyPattern(“0,000.00”); //applies a new pattern to the df object
System.out.println(df.format(12.7391)); //0,012.74

Appendix AA-1

Appendix AA… Multiplication of Matrices

The use and manipulation of matrices is of great interest in computer science. It is especially
useful when working with images where a very common operation is the multiplication of two
matrices. In this appendix we will learn how to multiply two matrices (because it’s the basis of a
project in Lesson 35), but first, let’s define what a matrix is:

A matrix is simply a two dimensional array of numbers. Consider the following sample
matrix, A.

A =

 1 2 -2 0
-3 4 7 2
 6 0 3 1

The matrix sample above has dimensions 3 X 4. This means that it has 3 rows and 4 columns. It
is conventional to always give the dimension of a matrix in row column (RC) order. Next, let’s
look at the multiplication of two matrices.

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

How does it produce the answer matrix on the right? Below, we show how to produce the –3 in
the answer:

 R=0 C=0 R=0, C=0

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

Calculate 1(-1) + 2(0) – 2(1) + 0(4) = -3.

Next, we produce the 18:

 R=1 C=0 R=1, C=0

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

-3 43
18 -60
 1 -20

Calculate -3(-1) + 4(0) + 7(1) + 2(4) = 18.

Appendix AA-2

The 1 in the answer is produced as follows:

 R=2 C=0 R=2, C=0

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

Calculate 6(-1) + 0(0) + 3(1) + 1(4) = 1.

The 43 in the second column of the answer is produced as follows:

 R=0 C=1 R=0, C=1

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

Calculate 1(3) + 2(9) –2(-11) + 0(-5) = 43.

The -60 is produced as follows:

 R=1 C=1 R=1, C=1

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

Calculate -3(3) + 4(9) + 7(-11) + 2(-5) = -60.

Finally, we produce –20:

 R=2 C=1 R=1, C=1

 1 2 -2 0
-3 4 7 2
 6 0 3 1

X

 -1 3
 0 9
1 -11
4 -5

=

 -3 43
18 -60
 1 -20

Calculate 6(3) + 0(9) + 3(-11) + 1(-5) = -20.

**

Not all matrices are compatible for multiplication. The following shows the requirements for
compatibility as well as a prediction for the dimensions of the product matrix.

Appendix AA-3

ARC X BRC = CRC

Notice that the number of columns in the A matrix must equal the number of rows in the B
matrix. The answer matrix (C) will have the same number of rows as the A matrix and the
same number of columns as B.

Finally, the reader is reminded that matrices can be represented in Java as two-dimensional
int arrays as illustrated by the following:

A =

 1 2 -2 0
-3 4 7 2
 6 0 3 1

In code, enter this matrix as follows:

int a[][] = { {1, 2, -2, 0},
 {-3, 4, 7, 2},
 {6, 0, 3, 1 } };

C = R

Appendix AB-1

Appendix AB … Monospaced Fonts

The following information about monospaced fonts is useful for the “Heap of Trouble” project in
Lesson 55.

The Times New Roman font is used to print the following two lines:

….
klmnop

Next, print the same two lines using the Courier New font:

....
klmnop

Do you see the difference? Notice the space the periods occupy in the top line of each example.
Each character in the Courier New font (a monospaced font) occupies the same amount of
horizontal space. This is characteristic of a monospaced font. Most fonts are not monospaced
because for normal word-processing they do not look very professional or pleasing to the eye.
Consider the following paragraph in Times New Roman. The paragraph after it is done with
Courier New.

Four score and seven years ago our fathers brought forth on this continent, a new nation,
conceived in liberty, and dedicated to the proposition that all men are created equal.

Four score and seven years ago our fathers brought forth on
this continent, a new nation, conceived in liberty, and
dedicated to the proposition that all men are created equal.

So if monospaced fonts are not as pleasing to the eye, why do we use them? The answer is that
they are used for formatting. Suppose we wish to print the following two currency values using
Times New Roman.

$147,892.88
$101,111.11

They seem to line up just fine, so what’s the big deal? In this case the word processor that
produced this document (Microsoft Word) is clever enough to go into a monospaced mode when
writing numbers like this. However, when aligning codes as follows, we see the problem.

 AIIXIULK-XXBQ
 IIIXIUIB-K$%A

Each of the above two lines has the same number of characters before and after the dash. They
don’t line up with each other. Now, look at the same pair of codes using a monospaced font and
we can observe that vertical alignment is maintained.

 AIIXIULK-XXBQ
 IIIXIUIB-K$%A

For a table of such codes, the monospaced version is much more pleasing to the eye. Some other
monospaced fonts are:
 Arial Monospace Courier Letter Gothic Lucida Console
 OCR-A OCR-B MICR Typewriter Gothic
 Typewriter Elite Typewriter

Appendix AC-1

Appendix AC… Regular Expressions

This appendix will only present a cursory explanation of regular expressions. There is much,
much more to the grammar of regular expression than will be presented here. The reason for the
presentation of regular expressions in this book is for the purpose of understanding the split
method from the String class. Additionally, the replaceAll and replaceFirst methods (they also
use regular expressions) will be discussed here. See Lesson 18 for more on the split method.
Certain methods of the Scanner class also use regular expressions.

Regular expressions describe character patterns that aid in the location of matching text. A
popular program that uses regular expressions is grep (which stands for “generalized regular
expression pattern”). Grep is part of UNIX, but versions do exist for Windows and MacOS.

So, how do we use regular expressions? First, we will show some examples of general usages of
regular expressions:

Regular Expression What it Finds
[0-9]+ Find sequences of digits like “183”, “2”, “19239”, etc. It would

not, for example, find 23,826 in its entirety because the comma
breaks the sequence. It would find 23 and 826 separately.
Notice that “[0-9]” denotes any digit between 0 and 9 while “[0-
9]+” means “one or more” occurrence of 0 through 9.

xyz Find occurrences of “xyz” in the text.
D[J-Zj-z] Find occurrences of a single “D” followed by a single

occurrence of a letter that falls in the range between “J” and “Z”
(either upper or lower case).

[4-8][0-5][^B-M] Find occurrences of a single digit in the range from 4 through 8
followed by another single digit in the range from 0 through 5
followed by a single letter that is not in the range from “B”
through “M”. Notice that the “^” means not.

J.[am]4 Find occurrence of a single letter “J”, followed by any single
character (the period means any character) followed by an “a”
or an “m” followed by the digit 4.

J\.[am]4 This means the same thing as the previous expression except \.
means we are looking for a literal period now instead of “any
character”.

A|b[p-z] Find occurrences of either the letter “A” or the letter “b”
followed by any letter in the range “p” through “z”. Notice that |
means OR.

Fp*[am-z] Find occurrences of the letter “F” followed by zero or more
occurrences of the letter “p” followed by the letter “a” or any
letter between “m” and “z”. Notice that “*” means zero or more
occurrences.

C\s+ Find occurrences of “C” followed by one or more white space
characters.

 Table AC-1 Sample regular expression usage

The following tables expose just some of the grammar used in regular expressions.

Appendix AC-2

Sample Character Classes Results, Meaning
[xyz] A single character consisting of “x”, “y”,or “z” (simple class)
[^xyz] Any character except “x”, “y”, or “z” (negation)
[m-yA-K] “m” through “y” or “A” through “K”, inclusive (range)
[m-y&&[^xy]] “m” through “y” except for “x” and “y” (subtraction)
[C-Z&&[^M-R]] “C” through “Z”, but not “M” through “R” (subtraction)

 Table AC-2 Character classes

Predefined
Characters

Meaning

. Any character
\d A digit: [0-9]
\D A non-digit: [^0-9]
\p{Name} Matches any character in the named character class

specified by Name. Supported names are Unicode groups
and block ranges. Name could be something like Digit.

\P{Name} Matches text not included in groups and block ranges
specified in Name.

\s A whitespace character: [\t\n\f\r\x0B]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z0-9]
\W A non-word character: [^\w]

 Table AC-3 Predefined character classes

Greedy quantifiers Meaning
M? “M”, once or not at all
M* “M”, zero or more times
M+ “M”, one or more times
M{n} “M”, exactly n times
M{n, } “M”, at least n times
M{n,m} “M”, at least n but not more than m times

 Table AC-4 Greedy quantifiers

POSIX Character Classes Results, Meaning
\p{Lower} A lower-case alphabetic character: [a-z]
\p{Upper} An upper-case alphabetic character: [A-Z]
\p{ASCII} All ASCII: [x00-\x7F]
\p{Alpha} An alphabetic character: [\p{Lower}\p{Upper}]
\p{Digit} A decimal digit: [0-9]
\p{Alnum} An alphanumeric character: [\p{Alpha}\p{Digit}]
\p{Punct} Punctuation: One of !”#$%&’()*+,-./:;<=>?@[\]^_`{ | }
\p{Graph} A visible character: [\p{Alnum\p{Punct}]
\p{Print} A printable character: [\p{Graph}]
\p{Blank} A space or a tab: [\t]
\p{Cntrl} A control character: [\x00-\x1F\x7F]
\p{XDigit} A hexadecimal digit: [0-9a-fA-F]
\p{Space} A whitespace character: [\t\n\x0B\f\r]

 Table AC-5 POSIX (Portable Operating System Interface for UniX) character classes

Appendix AC-3

Escape Sequence Meaning
\\ The backslash character
\on The character with octal value on (0<=n<=7)
\onn The character with octal value onn (0<=n<=7)
\omnn The character with octal value omnn (0<=m<=3, 0<=n<=7)
\xhh The character with hexadecimal value 0xhh
\uhhhh The character with hexadecimal value 0xhhhh
\t The tab character (‘\u0009’)
\n The new line (line feed) character (‘\u000A’)
\r The carriage return character (‘\u000D’)
\f The form-feed character (‘\u000C’)
\a The alert (bell) character (‘\u0007’)
\e The escape character (‘\u001B’)
\cx The control character corresponding to “x”
\. A literal period
* A literal asterisk
\+ A literal plus sign
\[\] \) \(\^ A literal [, A literal], A literal(, A literal), A literal ^

 Table AC-5

sp = s.split(“\\s+”); //contiguous whitespace is the delimiter
 //sp[0] = “Homer” sp[1] = “Simpson” sp[2] = “is” sp[3] = “51”
 //sp[4] = “years” sp[5] = “old”
sp = s.split(“m|p”); //both “m” and “p” are delimiters
 //sp[0] = “Ho” sp[1] = “er Si” sp[2] = “” (notice sp[2] is a zero length)
 //sp[3] = “son is 51 years old”

 Escape sequences used in regular expressions

Double the number of backslashes:
All of the above syntax applies when you are directly using a regular expression compiler (as
with the grep program). When you use regular expressions in Java you must be aware that the
expression will go through two compilers. First, the Java compiler is applied and then the regular
expression compiler. Each needs its own backslash symbol for any escape sequence that might
be in a regular expression. Therefore, in order to indicate, for example, whitespace (\s when used
directly with the regular expression compiler) you will need to denote it as “\\s” when used
inside Java. Similarly, the escape sequence for a backslash that formerly was “\\” will now need
to be “\\\\”. Just remember the rule to double the number of backslashes in any regular
expression you use with Java.

The split method:
Now, let’s investigate how regular expressions are used with the split method of the String class.
Basically, the split method parses a String into the elements of a returned array by using
delimiters specified by a regular expression parameter. Following is the signature of the split
method and some sample usage:

Signature:
public String[] split(String regex) //regular expression regex specifies the delimiters

Examples:
String s = “Homer Simpson is 51 years old”;
String sp[] = s.split(“[0-9]+|rs”); //delimiters are “51” and “rs”
 //sp[0] = “Homer Simpson is ”
 //sp[1] = “ yea” sp[2] = “ old”

Appendix AC-4

sp = s.split(“j”); //sp[0] = “Homer Simpson is 51 years old”

sp = s.split([mnd]); //sp[0] = “Ho” sp[1] = “er Si” sp[2] = “pso”;

 //sp[3] = “ is 51 years ol” Notice that the ‘d’ delimiter at the end
 //does not produce a trailing empty String element.

A technique for understanding split:
Following is a suggested technique for recognizing the various elements into which a
String is split. Assume the String we wish to split is:

s = “ChaveAAA a niceC dayCCC and coACme back sCAAoonCC”;

Here is the split statement itself:

String sp[] = s.split(“[AC]+”);

The delimiters will be one or more occurrences of either A or C. It could also be any
combination of A and C such as ACCA. This entire group (ACCA) would act as a
single delimiter.

The first thing we need to do is identify all the delimiter “groups” and strike through
them as follows:

“ChaveAAA a niceC dayCCC and coACme back sCAAoonCC”

Next, put a vertical line (the pipe symbol, |) at the beginning (but not the end) of the
String and consider this a separate delimiter.

“|ChaveAAA a niceC dayCCC and coACme back sCAAoonCC”

The separate elements of sp are the substrings between these delimiters. Notice that the
only subtle one is the leading empty String. These elements are listed below:

“|ChaveAAA a niceC dayCCC and coACme back sCAAoonCC”

“” “have” “ a nice” “ day” “ and co” “me back s” “oon”

A weird exception to the rule:
If multiple delimiters are “bunched” at the end of the String, split does not produce empty
Strings between them:

Example:
String s = “Hello good buddybuddybuddy”;
String []sp = s.split(“buddy|\\s+); //sp[0] = “Hello” sp[1] = “good”

Overloaded:
The split method is overloaded. Its other signature is:

Signature:
public String[] split(String regex, int limit)

Here, we split into at most limit number of elements.

Appendix AC-5
Other methods that use regular expressions:
The replaceAll, replaceFirst, and matches methods of the String class also use regular
expressions:

Signature:
public String replaceAll(String regex, String replacement) //replaces all matches of regex

Example:
String s = “The Wright brothers were the first to fly.”;
String sr = s.replaceAll(“[Tt]he”, “Kitty Hawk”);

 //sr = “Kitty Hawk Wright broKitty Hawkers were Kitty Hawk first to fly.”

Signature:
public String replaceFirst(String regex, String replacement) //replace first match to regex

Example:
String s = “The Wright brothers were the first to fly.”;
String sr = s.replaceFirst(“[Tt]he”, “Kitty Hawk”);

 //sr = “Kitty Hawk Wright brothers were the first to fly.”

Signature:
public boolean matches(String regex)

Example:
String s = "cde code sjsk d d";
if(s.matches(“.*code.*”))

System.out.println(“TRUE”); //Prints TRUE

Beware of the tricky double backslash:
Consider a problem in which we have a String that might look something like the following:

s = “ab?c”

Now suppose that the question mark is to act as a “wild card” in which it can stand for
any alphabetical character. Futhermore, suppose that we wish to make a proper regular
expression from s. Its proper form would be yet another String with “?” replaced with
“\\p{Alpha}” as follows:

“ab\\p{Alpha}c”

Our task is to take s and programmatically change it to this new String. One might guess
that the way to do this is:

s = s.replaceAll(“\\?”, “\\p{Alpha}”);

Actually, this is not correct. We must remember that the \\ in the second parameter is part
of a String and from Appendix B this is simply an escape sequence representing a single
backslash. The correct syntax is:

s = s.replaceAll(“\\?”, “\\\\p{Alpha}”);

Appendix AD-1

Appendix AD… Formatter Class Specifiers and Flags

Information presented in this Appendix is applied to Formatter class objects and to the printf
method. Both of these are presented in Lesson 27.

Format Specifier Applied to Examples: Shown here are the arguments of a

printf command and the resulting printout.
%a Floating point hex (“>%a<”, 187.2209) >0x1.767119ce075f7p7<
%b Boolean (“>%b<”, 3<2?true:false) >false<
%c Character (">%c<", 'K') >K<
%d Decimal integer (">%d<", 1234) >1234<
%e Scientific notation (">%e<", 2341.45) >2.341450e+03<
%f Decimal floating point (">%f<", 2341.45) >2341.450000<
%g Uses %e or %f which-

ever is shorter
(">%g<", 2341.45) >2341.45<

%h Hash code (hex equiv) (">%h<", 3451) >d7b<
%o Octal integer (">%o<", 112) >160<
%n Inserts newline char Does not match up to an argument
%s String (">%s<", "hello") >hello<
%t Time and date (“>%tr<”, cal) >08:23:46 PM<
%x Integer hexadecimal (">%x<", 1022) >3fe<
%% Inserts percent sign Does not match up to an argument

All of these except %n and %% have upper case versions that cause the printout to be
done in uppercase letters.
Table AD-1

Flag

 Format Specifiers and their meanings

Meaning
- Left justification. (Default is right justification.)
Varies as applied to different format specifiers. %e# guarantees a decimal

point. %x# causes a 0x to be prefixed. %o# prefixes a zero.
0 Output will be padded with zeros.
space Output will be padded with spaces (default).
+ Positive numeric output will be preceded by a plus sign.
, Numeric values will include grouping separators (typically commas).
(Negative numeric values will be enclosed within parentheses (minus sign is

dropped). Has no effect on positive numbers.
An argument of (“>%0(6.1f<” ,37.478) results in >0037.5<
An argument of (“>%0(8.1f<” ,-37.478) results in >(0037.5)<

Table AD-2 Format flags and their meanings

Appendix AD-2

Argument specifier(‘$’):
In the expression “%2$03.5f”, the portion 2$ specifies that the 2nd listed argument is to be used.
Notice in this scheme that the indices do not start numbering with 0, rather with 1.

1. These suffixes are to be appended to the %t specifier (see Table AD-1 above). For
example, %tr would give the time in 12 hour hh:mm:ss AM/PM format.

2. The arguments for a %t specifier must be of type Calendar, Date, Long or long.
3. Produce a Calendar object with Calendar cal = Calendar.getInstance();

Suffix Meaning
a Abbreviated weekday name
A Full weekday name
b Abbreviated month name
B Full month name
c Date and time string date formatted as hh:mm:ss timeZone year
C First two digits of year
d Day of month (01 – 31)
D month/day year
e Day of month (1 – 31)
F year-month-day
h Abbreviated month name
H Hour (00 – 23)
i Day of year (001 – 366)
I Hour (01 – 12)
k Hour (0 – 23)
l Hour (1 – 12)
L Millisecond (000 – 999)
m Month (01 to 13)
M Minute (00 – 59)
N Nanoseconds (000000000 – 999999999)
p Locale equivalent of AM or PM (lowercase)
P Locale equivalent of AM or PM (uppercase)
Q Milliseconds from 1/1/1970
r hh:mm:ss AM/PM (12 hour format)
R hh:mm (24 hour format)
s Seconds from 1/1/1970 UTC
S Seconds (00 – 60)
T hh:mm:ss (24 hour format)
y Year without century (00 – 99)
Y Year with century (0001 – 9999)
z Offset from UTC
Z Time zone name

Table AD-3 Time/Date suffixes

Appendix AE-1

Appendix AE… javaDoc

What is javaDoc?
Generally, javaDoc is the technique used to produce standard web-page based documentation
(html files) for Java source code using embedded rems in that source code. Specifically, javaDoc
is an executable file that is supplied as a part of Java. It generates such documentation.

To really understand what javaDoc is all about, go to the internet and view a final product of
such documentation with the following web page:

 http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

This is Sun’s standard way of documenting a .java file. Notice all the links between the various
pages and sections. Documentation for your own programs will look just like this, and it is up to
you as to how much detailed information you wish to give.

So, how do we produce such documentation? The first step is to properly comment your source
code as the following sample class demonstrates. We will be examining each section with regard
to meaning and syntax:

/**This class permits the storage and retrieval of all variables necessary to describe a linear function (a line).
 * The special cases of vertical and horizontal lines are handled. For example, the method getYvalue is
 * meaningless if field vert is true. When there is the potential for such meaningless data, test the values of
 * boolean fields vert or horiz first.
 * @author Charles Cook
 * @version 2.03
 */
public class LinearFunction implements LinearFunct
{
 /**Use this constructor if the line is not vertical and if slope and y-intercept are known.
 * @param slope is the slope of the line and will be assigned to field m.
 * @param yIntc is the y intercept and will be assigned to field b.
 */
 public LinearFunction(double slope, double yIntc)
 { }

 //…other constructors not shown…

 /**Finds the root of the function (its x intercept).
 * @throws ArithmeticException if field horiz is true.
 * @return field b if field horiz is true. Return field xIntc if horiz is false.
 */
 public double getRoot()
 { }

 // …. other methods not shown ….

 private double m; //slope
 private double b; //y-intercept
 private double xIntc;

 /**true if line is vertical, false otherwise.*/
 public boolean vert;

 /**true if line is horizontal, false otherwise. */
 public boolean horiz;
}

http://java.sun.com/j2se/1.5.0/docs/api/java/lang/Math.html

Appendix AE-2

First, let’s examine the following section:

/**This class permits the storage and retrieval of all variables necessary to describe a linear function (a line).
 * The special cases of vertical and horizontal lines are handled. For example, the method getYvalue is
 * meaningless if field vert is true. When there is the potential for such meaningless data, test the values of
 * boolean fields vert or horiz first.
 * @author Charles Cook
 * @version 2.03
 */
public class LinearFunction implements LinearFunct

Uses a special “bock rem”:
The first thing to notice is that this is a “block rem”. Typically, a block rem uses the delimiters
“/*” and “*/”. In order for javaDoc to recognize the block, the beginning delimiter must have
two asterisks, “/**”. The asterisks between “/**” and “*/” are not necessary; however, they are
typically included as in the above vertically aligned fashion so as to give a nice, organized
appearance. These block rems are always placed immediately above what they describe, and the
beginning lines generally describe the feature being commented. Notice in this example that the
class as a whole is described in a general overview.

Special tags:
Next, we notice two special tags that are each preceded with “@”. In this case they are for the
author and version. These tags are optional and can be omitted if desired.

The resulting section of the web page for the section of sample code above is:

Appendix AE-3
Now let’s take a look at the block rem just above the constructor:

 /**Use this constructor if the line is not vertical and if slope and y-intercept are known.
 * @param slope is the slope of the line and will be assigned to field m.
 * @param yIntc is the y intercept and will be assigned to field b.
 */

 public LinearFunction(double slope, double yIntc)

The param tag:
Again, the first line provides a general description, but then we notice a new tag, param. As
before, param is preceded by “@” as are all tags. Each occurrence of @param describes one of
the parameters passed to the method being documented. The resulting section of the web page
produced by this section of sample code is:

If the second link is clicked the following section of the web page is displayed:

Finally, we take a look at the section of code just above method getRoot():
 /**Finds the root of the function (its x intercept).
 * @throws ArithmeticException if field horiz is true.
 * @return field b if field horiz is true. Return field xIntc if horiz is false.
 */
 public double getRoot()

The throws and return tags:
Notice that two new tags are used here, throws and return. They respectively document
exceptions that this method might throw and what is returned by the method. If this method
accepted parameters it would also have been appropriate to have included param tags.

Appendix AE-4

The section of the web page corresponding to this latest sample code is:

Clicking on the top link yields the following section of the web page:

Notice on page AE-1 that the two public fields (state variables) are also to be documented. They
also result in Summary and Detail sections in the html files.

Generating the documentation:
There are two ways to generate documentation web pages from your properly commented source
code (.java files):

• From within your IDE. In BlueJ go to the Tools menu and then choose Project
Documentation | Regenerate. This will both produce the web pages (html files) for all
classes and interfaces in your project and then display them in a browser. The files are
conveniently placed in a folder titled doc within the current project folder.

• Directly run the javaDoc.exe file that is included as a part of Java. Here are the steps:

Appendix AE-5

o Bring up a console screen using the sequence Start | Run | cmd . This is typically
a black screen with white letters and is known by various names such as “the
DOS screen”, “the command prompt”, “the command line screen”, etc.

At this point we are going to issue a cd command at the command prompt (the
location of the blinking cursor) so as to change the “current folder”. This will
make it possible for the computer to find the files it needs if we are “parked” in
the folder in which those files reside. In other words, the “current folder” is where
the computer will first look for files that we enter as part of a command line. The
command cd means “change directory” (folder). At the command prompt, issue
this command:
 C:\ > cd C:\YourFolder\YourProject Folder

If all went well, you will see a new command prompt as follows:

 C:\ YourFolder\YourProjectFolder >_

This indicates that you are, indeed, “parked” in the YourProjectFolder folder
where your YourFile.java source file is located. Thus, when we issue a command
that references YourFile.java, the computer will find it.

o Next issue the command:

Path=C:\Program Files\Java\jdk1.5.0_04\bin

This just insures that the computer will be able to find the javaDoc.exe file that is
to be referenced in the next step.

o At the command prompt, issue this command:

javaDoc –author,-version, -d docFolder *.java

 The options –author and –version must be used;otherwise, author and
version tags will be ignored.

 The option -d docFolder is used in order to store the resulting html files in

a different folder (in this example, a folder named docFolder); otherwise,
the resulting html files will be stored in the current folder along with the
original source files. This tends to produce undesirable clutter.

 The *.java part indicates that all Java files in the current folder are to be

documented. This is usually what is desired since the project may consist
of several classes and interfaces, and it is desirable to have cross-links
between the various html files produced. It is, however, possible to just
document one source file. In that case, the syntax for this part would be
something like:

LinearFunction.java

Appendix AF-1

Appendix AF… Generic Classes

Establishing the need:
Suppose we are in need of a stack class that readily adapts to any type object. Initially, we wish
to create a stack object that stores only Strings and enforces “type safety” (only Strings are
permitted on the stack). Then later in the same program, we wish to create another stack class
object and store only Integers in it, again with type safety. Ordinarily, we would need to write
two different classes that are essentially the same except for one using String objects and the
other using Integer objects. Because these two classes are so similar; the desire is to write a
single generic class that is easily adaptable to either object type.

A generic class that serves both:
The following GenericStack class uses generic type parameters given by <E> that is replaced by
the actual data type when an object is instantiated from this generic class:

import java.util.*;
public class GenericStack<E>
{

 Stack<E> stck = new Stack<E>();

 public void push(E obj)
 {

 stck.push(obj);
 }

 public E pop()
 {

 E obj = stck.pop();
 return obj;

 }
}

Testing:
To test this GenericStack class, we need a Tester class with a main method that instantiates
GenericStack objects and passes a specific data type:

public class Tester
{

 public static void main(String args[])
 {

 GenericStack<String> gs1 = new GenericStack<String>();
 gs1.push("Hello");
 System.out.println(gs1.pop());

 GenericStack<Integer> gs2 = new GenericStack<Integer>();
 gs2.push(36);
 System.out.println(gs2.pop());

 }
}

Appendix AF-2

Analyzing the code:
In the main method above, gs1 is a GenericStack<String> type object. At the time of creation of
this object, the generic placeholder E is replaced with String to produce a String stack. For gs1
the GenericStack class effectively becomes the following:

import java.util.*;
public class GenericStack
{

 Stack<String> stck = new Stack<String>();

 public void push(String obj)
 {

 stck.push(obj);
 }

 public String pop()
 {

 String obj = stck.pop();
 return obj;

 }
}

Similarly, when gs2 is instantiated, the placeholder E is replaced with Integer and we have an
Integer stack.

Generics Summary:

Passing more than one parameter:
More than one generic parameter can be passed. For example, use something like
<E, T, W> to indicate the multiple parameters.

Logically the same:

Many algorithms are logically the same regardless of the type of data they use.
Using generics, the algorithm can be created just once and then adapted to
whatever data type fits the occasion.

Legal generic type parameters:

In the Tester class, type parameters of type String and Integer were passed. These
are both object types. Primitive types and arrays cannot legally replace
generic parameters. Actually, there is a way around the restriction on arrays.
Following is an example of how this is done by casting an Object array:

E[] x = (E[]) new Object[arraySize];

In the GenericStack class, the generic type parameter was designated as E.
Actually, any legal variable name can be used for a parameter.

Index-1

Index

absorption law …………………………………………. 32-2, Nug24-1
abs …………………………………………………….. 6-1, J-1
abstract ………………………………………………... 36-2, 38-1, Nug30-1
access control modifier ………………………………... 15-2, Nug-12
accuracy ………………………………………………. 48-2
acos……………………………………………………. 6-2
ADA …………………………………………………… S-1
add …………………………………………………….. 42-1, 43-2, 43-3, 44-2, 46-1, 50-1,

Nug30-1, J-3, J-4
addAll………………………………………………….. 42-1, 46-1
addFirst ………………………………………………... 50-1, J-3
addLast ……………………………………………….... 50-1, J-3
algebra, boolean ……………………………………….. 32-1
alph order ……………………………………………… Nug-7
Altair …………………………………………………... S-3
American Standard Code for Information Interchange .. D-3
Analytical Engine ……………………………………... S-1
ancestors ………………………………………………. W-1
AND, bitwise ………………………………………….. 28-1, Nug-11
AND, Boolean ………………………………………… 8-1, 32-1, Nug22-1
anonymous objects …………………………………….. 16-2
anti-virus software …………………………………….. T-1
AP correlation …………………………………………. Q-1
append ………………………………………………… 31-1, J-4
appending to the end of a file …………………………. 26-2
Apple IIe ………………………………………………. S-4
Apple Computer ……………………………………….. S-4
applyPattern …………………………………………… Z-1
area …………………………………………………….. 7-2
argument ………………………………………………. 15-3
ArithmeticException …………………………………... 37-2, K-1
arithmetic operators …………………………………… H-1
arrayCopy ……………………………………………... 19-2, Nug-10
ArrayIndexOutOfBoundsException …………………... 18-3, K-1
ArrayList ………………………………………………. 42-1, 42-2, 43-1, 44-3, 45-5, 53-2,

53-6, 56-2
ArrayListQueue ……………………………………….. 53-6
arrays …………………………………………………... 18-1, 19-1, 34-1, 43-1, 56-2, Nug-

13, Nug-17, Nug24-1
Arrays class ……………………………………………. 19-3, 35-2, 42-2
arrays of objects ……………………………………….. 19-1
ASCII ………………………………………………….. 13-1, D-1, Nug23-1
asin …………………………………………………….. 6-2
asList …………………………………………………... 42-2
assembly language …………………………………….. V-3
atan …………………………………………………….. 6-2
assignment …………………………………………….. 4-1
association list …………………………………………. 47-1
autoboxing …………………………………………….. 21-1, 43-1, 43-3
Autoexec.bat …………………………………………... X-3
auto-unboxing …………………………………………. 21-2
automatic initialization of arrays ……………………… 18-3

Index-2

averages ……………………………………………….. 25-6, 26-2
AWACS ……………………………………………….. 56-1
Babbage, Charles ……………………………………… S-1
back of queue ………………………………………….. 53-2
backslash ………………………………………………. 3-2, A-1
backspace ……………………………………………… A-1
balanced tree …………………………………………... 52-6
BankAccount class ……………………………………. 15-7
base ……………………………………………………. 14-1, G-1
base class ……………………………………………… 36-2
BaseClass class ………………………………………... 27-3
base folder …………………………………………….. I-2, I-3
Bemer, Robert …………………………………………. D-3
Big O …………………………………………………... 39-1, 41-13, 43-3, 57-7, Nug-13,

Nug27-1
binary ………………………………………………….. 14-1, G-1,Nug-6, Nug-14
binary expression tree …………………………………. 52-10
binary file ……………………………………………… 26-2, F-1
binary file editor ………………………………………. 14-4, U-1
binary search …………………………………………... 19-3, 35-2, 39-3, 41-13, 51-1 -6
binarySearch, Arrays class …………………………….. 19-3, 51-6
binary search tree ……………………………………… 52-1
binary tree ……………………………………………... 45-8, 52-1
bin folder ………………………………………………. I-2, X-1
bits ……………………………………………………... 14-1
bitwise operators ………………………………………. 28-1, 29-1, Nug-9
block ranges (Unicode characters) …………………….. AC-2
block rems ……………………………………………... 1-2, AE-2
BlueJ …………………………………………………... 19-4, M-1, N-1, X-1
boolean ………………………………………………… 8-1, 29-2, C-1
boolean algebra ………………………………………... 32-1
boolean operators ……………………………………… H-1, Nug-17
boolean search ………………………………………… 8-3
booleanValue ………………………………………….. 21-2
boot sector virus ……………………………………….. T-1
boot sequence ………………………………………….. T-2
boxing …………………………………………………. 21-1
branch …………………………………………………. W-1
break …………………………………………………... 10-1, 11-1, 12-2, Nug-8
BreezySwing class …………………………………….. M-1
browser ………………………………………………... V-2
Bubble Sort ……………………………………………. 41-2, 41-13
bug …………………………………………………….. S-3
bunching of indices ……………………………………. 57-3
byte ……………………………………………………. 14-1, C-1
c++ …………………………………………………….. AF-2
Calendar class …………………………………………. AD-2
calling chain …………………………………………… 37-1
call stack ………………………………………………. 50-3
capacity ……………..…………………………………. 42-2, J-4
cards …………………………………………………… S-5
casting …………………………………………………. 5-1, 42-2, 43-1, 43-2, Nug-12,

Nug23-1
catch …………………………………………………… 37-3, Nug29-1

Index-3

CD ……………………………………………………... X-2
ceil ……………………………………………………... 6-1, Nug27-1, J-2
censor ………………………………………………….. 23-5
Central Processing Unit ……………………………….. S-4
chain, calling …………………………………………... 37-1, 50-3
chaining (hashing) …………………………………….. 57-5
chain (linked list) ……………………………………… 49-1
change directory (cd) ………………………………….. X-2
char ……………………………………………………. 10-2, 13-1, C-1, Nug23-1
Character class ………………………………………… 13-2, Nug22-1
charAt …………………………………………………. 17-3, 31-3, Nug-4, J-1, J-4
charValue ……………………………………………… 21-2
checked exception ……………………………………... 37-2
child node ……………………………………………… W-1
class ……………………………………………………. 15-1
class creation …………………………………………... N-1, O-1
class loader …………………………………………….. I-3
class method …………………………………………… 20-2
classpath variable ……………………………………… I-3
class variable …………………………………………... 20-2
clear ……………………………………………………. 42-1, 43-2, 43-3, 47-1, 50-1
clone …………………………………………………... 36-4, 57-7
close ………………………………………………….... 24-1, 26-1
clusters of data in hash tables …………………………. 57-4
cmd ……………………………………………………. I-2
Collections …………………………………………….. 42-2, 45-5
collisions (hashing) ……………………………………. 57-5
color palette …………………………………………… 57-1
command ………………………………………………. X-3
command line arguments ……………………………… 19-4, Nug-16
command line prompt …………………………………. I-1, X-2
comment ………………………………………………. 1-1
Compaq Computer …………………………………….. S-4
Comparable ……………………………………………. 41-13, 45-1, 51-4, 52-7
Comparator ……………………………………………. 45-3, 46-2, 47-2
compare ……………………………………………….. 45-1
compare objects ……………………………………….. 45-1
compareTo …………………………………………….. 17-1, 45-1, 51-4, 52-7, J-1
compareToIgnoreCase…………………………………. 17-1
comparison operators ………………………………….. H-1
compatability for matrix multiplication ……………….. AA-3
compiled languages …………………………………… V-3
compiling …………………………………………….... I-1, V-3, X-1, X-2
complete tree …………………………………………... 55-1, W-1
complexity analysis …………………………………… 39-1
compound operator ……………………………………. 4-1
computer languages …………………………………… 50-3, V-1
concatenation ………………………………………….. 3-1,31-1, 31-2, Nug-7
constant ………………………………………………... 5-1, 20-3, Nug-10
constructor …………………………………………….. 15-1, 15-3, Nug-10
contains ……………………………………………….. 17-3, 42-1, 43-3, 46-1, 50-1
containAll ……………………………………………... 42-1
containsKey …………………………………………… 47-1
containsValue …………………………………………. 47-1

Index-4

continue ………………………………………………... 12-2, Nug-8
control expression ……………………………………... 11-1, 12-1
conversion between number systems ………………….. 14-1, Nug-6
conversion, char to String ……………………………... 13-1
conversion, primitives to objects ……………………… 21-1
conversion, numerics to Strings ……………………….. Nug-15
conversion, String to char ……………………………... 13-1
conversion, String to double …………………………... 22-1
conversion, String to int ……………………………….. 22-1
conversion, Wrapper objects to primitives ……………. 21-2
copyright ………………………………………………. T-2
copyValueOf …………………………………………... 19-2, J-1
cos ……………………………………………………... 6-2
cosmic superclass ……………………………………… 16-2, 36-4
countTokens …………………………………………… 23-1
CPU ……………………………………………………. S-4
create class …………………………………………….. N-1, O-1
create project …………………………………………... N-1, O-1
CSV files ………………………………………………. T-2
currentTimeMillis ……………………………………... 48-2
data member …………………………………………… 15-1
date/time format ……………………………………….. AD-1, AD_2
debugging aid ………………………………………….. X-1
DecimalFormat class ………………………………….. 27-2, Z-1
declare …………………………………………………. 2-1, 18-1, Nug21-1
decrement ……………………………………………… 4-2, 4-3
decryption project ……………………………………... 17-6
default …………………………………………………. 10-1
default constructor …………………………………….. 15-4
default package ………………………………………... I-2
defer exception handling ………………………………. 37-2
delete …………………………………………………... 31-3, J-4
deleteCharAt …………………………………………... 31-3
delimiter ……………………………………………….. 17-3, 23-1, Nug-16
Dell Computer ………………………………………… S-4
DeMorgan’s Theorem …………………………………. 32-2
depth of nodes …………………………………………. W-1
dequeue ………………………………………………... 53-1, 56-2
derived class …………………………………………… 36-2
descendents ……………………………………………. W-1
dictionary ……………………………………………… 47-1
Difference Engine ……………………………………... S-1
directory ……………………………………………….. I-3, X-2
disorganized data ……………………………………… 57-2
distribution of indices (hash table) ……………………. 57-5
divisors of a number …………………………………... 48-1
DOS …………………………………………………… S-4
DOS prompt …………………………………………… 19-4, I-4, X-1
double …………………………………………………. 2-1, C-1
double quote …………………………………………… A-1
doubleValue …………………………………………… 21-2
doubly linked list ……………………………………… 50-1
do-while loop ………………………………………….. 12-1
dynamic memory ……………………………………… 49-5

Index-5

edge ……………………………………………………. W-1
electronic community …………………………………. 36-5, U-1
email …………………………………………………... T-1
email hoax ……………………………………………... T-1
encryption project ……………………………………... 17-6
endless loop …………………………………………… 11-1
enhanced for-loop ……………………………………... 19-5, Nug-16, 44-3
ENIAC ………………………………………………… S-2
enqueue ………………………………………………... 53-1, 56-2
Entry …………………………………………………... 47-2, J-3
entrySet ………………………………………………... 47-1, 47-2, J-3
Environment Variable …………………………………. I-4, X-2
equality of objects ……………………………………... 16-2
equals ………………………………………………….. 9-1, 16-2, 19-3, 36-4, 42-1,57-7,J-4
equalsIgnoreCase ……………………………………… 9-1
escape sequence ……………………………………….. 3-2, A-1, Nug-8, AC-3
ethics …………………………………………………... T-2
etiquette ………………………………………………... T-2
Excel, MS ……………………………………………... T-2
Exception Project ……………………………………… 37-11
exceptions ……………………………………………... T-2
exclusive-OR, bitwise …………………………………. 28-1, Nug-3, Nug-14
exit …………………………………………………….. 27-6
Explorer, Windows ……………………………………. E-1
expression tree ………………………………………… 52-10
exends …………………………………………………. 36-1, Nug-15
factorial ………………………………………………... 40-1
factor-pairs …………………………………………….. 48-2
Fibonacci project ……………………………………… 40-10
Fibonacci series ……………………………………….. 40-4
field width ……………………………………………... 27-2
FIFO …………………………………………………… 50-2, 53-1, 56-1, Nug-11
figure of merit (hash table) ……………………………. 57-5
File class ………………………………………………. 24-1
file input ……………………………………………….. 24-1
FileNotFoundException ……………………………….. 37-4, K-1
file virus ……………………………………………….. T-1
FileWriter class ………………………………………... 26-1
fill, Arrays class ……………………………………….. 19-3, 35-2
final ……………………………………………………. 5-1, 36-2, Nug-10, Nug29-1
finally ………………………………………………….. 37-3, Nug29-1
find …………………………………………………….. 52-5
findInLine ……………………………………………... 17-4, J-4
findWithinHorizon …………………………………….. 17-4, J-4
flags (Formatter) ………………………………………. 27-2, AD-1
float ……………………………………………………. C-1
floating point numbers ………………………………… 2-1, C-1
floatValue ……………………………………………... 21-2
floor ……………………………………………………. 6-1, Nug27-1, J-2
floppy disk …………………………………………….. S-5, T-1
flow chart ……………………………………………… 27-5, 48-1
flushing a file buffer …………………………………... 26-2
folder options ………………………………………….. E-1
for-each style ………………………………………….. 19-5, Nug16-1

Index-6

for-loop ………………………………………………... 11-1
format ………………………………………………….. 27-1, Z-1
format specifiers and flags …………………………….. 27-2, AD-1
Formatter class ………………………………………… 27-2, AD-1
forum …………………………………………………... 36-5, U-1
front of queue ………………………………………….. 53-2
full binary tree …………………………………………. 55-1, W-1
GarbageCollector ……………………………………… 19-1
Gates, Bill ……………………………………………... S-3
Gateway Computer ……………………………………. S-4
Gb ……………………………………………………... S-5
generics ………………………………………………... 43-1, 47-2
get ……………………………………………………... 42-1, 43-2, 43-3, 47-2, 50-1, J-2
getCurrencyInstance …………………………………... 27-1
getFirst ………………………………………………… 50-1, J-3
getKey …………………………………………………. J-3
getLast …………………………………………………. 50-1, J-3
getNumberInstance ……………………………………. 27-1
getPercentInstance …………………………………….. 27-2
getValue ……………………………………………….. J-3
gigabyte ………………………………………………... 14-1, S-5, Y-1
GIS (Geographical Information System) ……………… CS1-9
graphical user interface, (GUI) ………………………... S-4, X-1
greedy quantifiers ……………………………………... AC-2
grep ……………………………………………………. AC-1
GUI ……………………………………………………. S-4, X-1
gymnastics project ……………………………………. 27-4
hacker ………………………………………………….. T-1
hard disk ……………………………………………….. S-5
hard-wiring ……………………………………………. S-2
hash code ……………………………………………… 57-5, 36-4, 57-7
hashing techniques …………………………………….. 57-4
HashMap ………………………………………………. 47-1, 57-7
HashSet ………………………………………………... 46-1, 57-7
hash table ……………………………………………… 57-2 – 57-7
hasMoreTokens ……………………………………….. 23-2
hasNext ………………………………………………... 17-5, 44-2, 46-1, J-3, J-4
hasNextDouble ………………………………………... J-4
hasNextInt ……………………………………………... J-4
hasPrevious ……………………………………………. 44-2, Nug30-1
HeapPriorityQueue ……………………………………. 56-3
HeapSort ……………………………………………..... 56-6
heap tree ……………………………………………….. W-1, 55-1, 55-1, 56-2
height of tree …………………………………………... W-1
Hello World …………………………………………… 1-1
Hewlett-Packard ………………………………………. 50-3
hex ……………………………………………………... 14-1, D-1, Nug-6, Nug-14
hoax ……………………………………………………. T-1
Hopper, Grace …………………………………………. S-3
horizon ………………………………………………… 17-4
html ……………………………………………………. D-1, X-1, AE-1, AE-3
IBM cards ……………………………………………... S-5
IDE …………………………………………………….. I-4, N-1, O-1, X-1
identity theft …………………………………………… T-2

Index-7

if statement …………………………………………….. 9-1
IllegalArgumentException …………………………….. K-1
illegal name ……………………………………………. 2-2
IllegalStateException ………………………………….. K-1
image ………………………………………………….. 57-1
implements …………………………………………….. 38-1, Nug-3, Nug-15
implementation perspective of interfaces ……………... 38-1, Nug-6
importing ………………………………………………. 7-1, 19-3, 20-4, I-1
include …………………………………………………. V-2
increment ……………………………………………… 4-2, 4-3, 42-2
indexOf ………………………………………………... 17-1, 42-1, 43-3, 50-1, Nug-17, J-1
infinite loop ……………………………………………. 11-1
infix form ……………………………………………… 50-4, 52-10
inheritance …………………………………………….. 16-2, 36-1
initialization block …………………………………….. Nug20-1
initialize ……………………………………………….. 2-1, 18-1, 18-3, Nug21-1
initializing expression …………………………………. 11-1, 12-1
initializing object arrays ………………………………. 19-1, Nug-13
initializing state variables ……………………………... 16-3
initializing variables …………………………………… 16-4
inner class ……………………………………………... 47-2, 54-1
inner interface …………………………………………. 47-1
inner loop ……………………………………………… 11-3
in-order traversal ………………………………………. 52-8, 52-10
input from file …………………………………………. 24-1
input from keyboard …………………………………... 7-1, M-1
Input/Output …………………………………………… S-4
InputStreamReader ……………………………………. M-2
insert …………………………………………………... 31-4
insertion sort …………………………………………... 41-6, 41-13
installing packages …………………………………….. M-1
instantiate ……………………………………………… 15-1, 16-2
interfaces ………………………………………………. 38-1
intersection of Sets …………………………………….. 46-1
instance fields …………………………………………. 15-1
instanceof ……………………………………………… 36-4, 38-3
int ……………………………………………………… 2-1, C-1
interface ……………………………………………….. 42-1
interior node …………………………………………… 52-10, W-1
Internet ………………………………………………… 14-4, T-1, U-1
Internet worm …………………………………………. T-1
interpreted languages ………………………………….. V-3
interrupt ……………………………………………….. 56-1
intersection of sets …………………………………….. 46-3
intValue ……………………………………………….. 21-2, J-1
I/O ……………………………………………………... S-4
IOException …………………………………………… 24-2, 37-3,4, M-2
isDigit …………………………………………………. 13-2, Nug22-1
isEmpty ………………………………………………... 42-1, 43-2, 46-1, 47-2, 50-1 56-2
isLetter ………………………………………………… 13-2, Nug22-1, J-2
isLetterOrDigit ………………………………………… 13-2, Nug22-1, J-2
isLowerCase …………………………………………... 13-2, Nug22-1, J-2
isUpperCase …………………………………………… 13-2, Nug22-1, J-2
isWhitespace …………………………………………... 13-2, Nug22-1, J-2

Index-8

iterator …………………………………………………. 42-1, 43-1, 44-1, 46-1, Nug29-1
jar files ………………………………………………… I-3, I-5
java.exe ………………………………………………... X-1
javac.exe ………………………………………………. X-1
javaDoc ………………………………………………... 45-12, X-1, AE-1
java.io ………………………………………………….. 24-1, I-1
Java Script ……………………………………………... V-2
java.text ………………………………………………... 27-1, I-1
java.util ………………………………………………... I-1
Java virtual machine …………………………………... I-3
javaw.exe ……………………………………………… X-1
JCreator ………………………………………………... 19-4, M-1, O-1, X-1
Jobs, Steve …………………………………………….. S-4
JVM …………………………………………………… I-3
kb ……………………………………………………… S-5
key …………………………………………………….. 57-1
keyboard ………………………………………………. 7-1, S-2, 17-6
keyed list ………………………………………………. 47-1
key, map ……………………………………………….. 47-1
key-punch ……………………………………………... S-5
keySet …………………………………………………. 47-2, 47-12, Nug25-1
key words ……………………………………………… A-1
kilobyte ………………………………………………... 14-1, Y-1, S-5
languages, computer …………………………………... 50-3, V-1
LAN …………………………………………………… 47-2, T-1, U-1
lastIndexOf ……………………………………………. 17-2, 42-1, 43-3, 50-1
law of absorption ……………………………………… 32-2, Nug24-1
leaf node ……………………………………………….. 52-10, W-1
legal name ……………………………………………... 2-2
length ………………………………………………….. 3-1, 18-2, 31-3, J-4
level of nodes ………………………………………….. W-1
level-order traversal …………………………………… 52-9
license agreement …………………………………….... T-2
LIFO …………………………………………………... 50-2, 53-1, Nug-11
linear probing ………………………………………….. 57-5
linear search …………………………………………… 39-3, 41-13, 51-5
line break ……………………………………………… 3-2, A-1
linked list ……………………………………………… 49-1, 50-1
LinkedList Class ………………………………………. 42-1, 42-2, 45-5,50-1,53-1,56-2,J-3
List interface …………………………………………... 42-1, 43-1
ListIterator …………………………………………….. 42-1, 43-1, 44-1, 50-1, Nug30-1
load factor (hash table) ………………………………... 57-5
local area network (LAN) ……………………………... T-1, U-1
log ……………………………………………………... 6-2, Nug-3
logical size …………………………………………….. 19-2, 43-1
long ……………………………………………………. C-1
longValue ……………………………………………… 42-2
lookup table …………………………………………… 57-1
Lord Byron …………………………………………….. S-1
Lovelace, Ada …………………………………………. S-1
lower bound …………………………………………… 51-1
machine language ……………………………………... V-3
MacIntosh ……………………………………………... S-4
macro virus ……………………………………………. T-1

Index-9

MalformedURLException …………………………….. K-1
map ……………………………………………………. 47-1, Nug25-1
Map.Entry ……………………………………………... 47-2, J-3
masking ………………………………………………... 28-4, Nug-5
matches ………………………………………………... AC-5
Math class ……………………………………………... 6-1, Nug27-1
matrix ………………………………………………….. 35-1, 35-5,AA-1
max ……………………………………………………. 6-1, J-2
max heap ………………………………………………. 55-1
MAX_VALUE ………………………………………... 22-2, C-1
megabyte ………………………………………………. 14-1, Y-1
menu …………………………………………………... 10-1
Merge Sort …………………………………………….. 19-3, 41-10, 41-13
message boards ………………………………………... 36-5, U-1
methods ………………………………………………... 15-1
microprocessor ………………………………………… 56-1
min …………………………………………………….. 6-1, J-2
miniaturization ………………………………………… S-4
min heap ……………………………………………….. 55-1
MIN_VALUE …………………………………………. 22-2, C-1
MITS Altair …………………………………………… S-3
mixed data types ………………………………………. 5-1
modulus ……………………………………………….. 4-1, Nug-9, Nug-11
money …………………………………………………. 27-1, Z-1
monospaced fonts ……………………………………... 55-9, AB-1
Monte Carlo technique ………………………………... 30-5
most significant bit ……………………………………. 28-2, 29-1, G-1
mouse …………………………………………………. CS1-9, S-4
msb ……………………………………………………. 28-2, 29-1, G-1
MS Excel ……………………………………………… T-2
MS Word ……………………………………………… T-2
multiple declarations …………………………………... 4-1
multiple key sorting …………………………………… 41-18
music …………………………………………………... T-2
name reversal ………………………………………….. 11-5
naming conflicts ……………………………………….. I-1
naming conventions …………………………………… 2-2, 5-2, 15-2, 35-1
nanosecond ……………………………………………. S-2
nanoTime ……………………………………………… 48-2
negation operator ……………………………………… 8-1
negative number ……………………………………….. 14-4, G-1
nested ifs ………………………………………………. 9-4
nested loops …………………………………………… 11-2
nested selection operators ……………………………... 33-1
network communications ……………………………… S-4, T-1, U-1
new line character ……………………………………... 3-2, A-1, D-1, AD-1
next ……………………………………………………. 7-1, 17-4, 44-2, 46-1, J-3, J-4
nextBoolean……………………………………………. 30-2
nextDouble ……………………………………………. 7-1, 30-1,Nug25-1, J-4
nextGaussian …………………………………………... 30-2
nextIndex ……………………………………………… 44-2, Nug30-1
nextInt …………………………………………………. 7-1, 30-1, Nug25-1, J-4
nextLine ……………………………………………….. 7-2, J-4
nextToken ……………………………………………... 23-1

Index-10

node ……………………………………………………. 49-1, 52-1
nonsensical data ……………………………………….. 57-2
non-static initialization block …………………………. Nug20-1
NOT, bitwise ………………………………………….. 28-1, Nug-9
NOT, Boolean …………………………………………. 8-1
NotePad ………………………………………………... E-2, X-1
null …………………………………………………….. Nug-8, Nug-17
NullPointerException …………………………………. 19-1, K-1
NumberFormat ………………………………………… 27-1, Nug30-1
NumberFormatException ……………………………... 22-1, 37-3, K-1
numeric variables ……………………………………… 4-1
object …………………………………………………... 15-1, 34-1
Object (cosmic super class) …………………………… 16-2, 36-4, 42-2, 51-4
object perspective of interfaces ………………………... 38-2
OCR …………………………………………………… 45-5, U-1
octal ……………………………………………………. 14-1, D-1, Nug-6, Nug-14
odometer ………………………………………………. G-2
operating system ………………………………………. S-4
operator precedence …………………………………… H-1
optical character recognition …………………………... 45-5, U-1
optimization of a program …………………………….. 48-2
OR, bitwise ……………………………………………. 28-1, Nug-11
OR, boolean …………………………………………… 8-1, 32-1, Nug22-1
order of operatrions ……………………………………. H-1
outer class ……………………………………………... 54-1
outer loop ……………………………………………… 11-3
overloaded ……………………………………………... 30-1, Nug-2
overriding ……………………………………………… 16-2, 36-3, Nug-1
overwriting …………………………………………….. 26-1,2
package ………………………………………………... I-1
Package access ………………………………………… 16-4, Nug-12
package installation …………………………………… M-1
palette ………………………………………………….. 57-1
palletized image ……………………………………….. 57-1
parallel arrays ………………………………………….. 18-2
parameter ……………………………………………… 5-2, 15-2
parent node …………………………………………….. W-1
parseDouble …………………………………………… 22-1, 25-2
parseInt ………………………………………………... 14-3, 22-1, 25-2
parsing Strings (with Scanner) ………………………… 17-3
partition ………………………………………………... 41-8
Pascal, Blaise ………………………………………….. S-1
passing an array ……………………………………….. 18-3
passing by reference …………………………………... 34-1
passing by value ……………………………………….. 34-1
password ………………………………………………. 47-2, T-2
path length …………………………………………….. W-1
path (tree) ……………………………………………… W-1
path variable …………………………………………… X-2, I-2
pattern …………………………………………………. 27-2, Z-1
pattern, character ………………………………………. AC-1
payload ………………………………………………… T-1
peek ……………………………………………………. 56-2
PEMDAS ……………………………………………… 4-1

Index-11

percent …………………………………………………. 27-2, Z-1
physical size …………………………………………… 19-2, 43-1
PI ………………………………………………………. 6-1
pipeline ………………………………………………... 49-1
pixel …………………………………………………… S-4, 57-1
PKUNZIP ……………………………………………... T-2
plagiarize ………………………………………………. T-2
planets …………………………………………………. 10-5
pointer …………………………………………………. 49-1, 50-1
polymorphism …………………………………………. 38-4, Nug-2
pop …………………………………………………….. 50-2
POSIX character classes ………………………………. AC-2
postfix form …………………………………………… 50-4, 52-10
post-order traversal ……………………………………. 52-9,10
pow ……………………………………………………. 6-1, J-2
precedence …………………………………………….. 8-2, 29-3, H-1, Nug-17
precision ……………………………………………….. 27-3, 48-2
precomputed values …………………………………… 57-2
preconditions …………………………………………... 37-1
prefix form …………………………………………….. 52-10
pre-order traversal …………………………………… 52-8, 52-10
preserve sign …………………………………………... 29-1
previous ………………………………………………... 44-2, Nug30-1
previousIndex …………………………………………. 44-2, Nug30-1
primitive data types ……………………………………. C-1
print ……………………………………………………. 26-1
printing a list, set ………………………………………. 42-2, 46-2
println ………………………………………………….. 1-1, 26-1
printf…………………………………………………… 27-3
print server …………………………………………….. 56-1
PrintWriter class ………………………………………. 26-1
priority ………………………………………………… 56-2
priority queue ………………………………………….. 55-1, 56-1
PriorityQueue interface ………………………………... 56-2
private …………………………………………………. 16-1, 16-4, Nug-12
probing (hashing) ……………………………………… 57-6
Project… Add ‘em Up ………………………………… 17-6
Project… A Heap of Trouble ………………………….. 55-9
Project… Array of Hope ………………………………. 18-7
Project… A Taste of Hash …………………………….. 57-6
Project… BaseClass …………………………………… 27-5
Project… Basically Speaking …………………………. 14-5
Project… Big Bucks in the Bank ……………………… 43-7
Project… Big Bucks Revisited ………………………... 44-7
Project… Binary Search, Reverse Order ……………… 51-3
Project… Binary Search with Objects ………………… 51-4
Project… BST find Method …………………………… 52-5
Project… Bubble Sort …………………………………. 41-3
Project… Cheating on Your Arithmetic Assignment …. 4-5
Project… Code Talker ………………………………… 47-9
Project… Compute This ………………………………. 6-4
Project… Concatenations Gone Wild …………………. 31-2
Project… Count ’em Right ……………………………. 18-5
Project… Divisors of a Number ………………………. 48-2

Index-12

Project… Don’t Make Me Take That Final! ………….. 46-4
Project… Encryption/Decryption ……………………... 17-7
Project… Even or Odd? ……………………………….. 9-4
Project… Fibonacci …………………………………… 40-10
Project… From Me To You …………………………… 1-3
Project… Full Name …………………………………... 7-3
Project… Gas Mileage ………………………………… 16-7
Project… Generate Random Doubles………………….. 30-3
Project… Generate Random Integers………………….. 30-3
Project… Get Rid of That Plus Sign! …………………. 25-3
Project… Going in Circles …………………………….. 7-3
Project… Gymnastics …………………………………. 27-4
Project… Hashing Abraham Lincoln ………………..... 57-6
Project… HashSet/Intersection ………………………... 46-3
Project… HashSet/Union ……………………………… 46-4
Project… Histogram …………………………………... 47-10
Project… How Far To The Line? ……………………... 20-6
Project… Inner Class Inside a Method ………………... 54-2
Project… Inner Class Inside an Outer Class …………... 54-2
Project… Insertion Sort ……………………………….. 41-7
Project… insert Method for Singly Linked List ………. 49-4
Project… Keep Trying ………………………………… 37-10
Project… Linear Function …………………………….. 38-7
Project… Mapping Bank Accounts …………………… 47-5
Project… Masking Telemetry Data …………………… 28-4
Project… Matrix Multiplication ………………………. 35-5
Project… Matrix Multiplication with File Input ……… 35-6
Project… Merge Sort ………………………………….. 41-13
Project… Military Censor ……………………………... 23-5
Project… Mixed Results ………………………………. 5-2
Project… Monte Carlo Technique …………………….. 30-6
Project… Multiple Key Sorting ……………………….. 41-18
Project… Name That Celebrity ……………………….. 3-4
Project… Optimized Code for Divisors of a # ………... 48-3
Project… Overdrawn at the Bank ……………………... 15-8
Project… Pass the Gravy, Please ……………………… 34-3
Project… Printing a Heap ……………………………... 55-8
Project… Quick Sort …………………………………... 41-9
Project… Reading Files ……………………………….. 24-5
Project… Selection Sort ………………………………. 41-4
Project… Shifting Marquee …………………………… 53-6
Project… Smile for the Camera ……………………….. 56-5
Project… Sorting a String Array ……………………… 19-11
Project… Sorting BankAccount Objects Alphabetically 45-12
Project… Sorting BankAccount Objects ……………... 45-11
Project… Sorting BankAccount Objects using a
 Comparator …………………………………

45-12

Project… Stack Calculator ……………………………. 50-2
Project… StackLL Class ………………………………. 50-2
Project… Student Averages …………………………… 25-5
Project… Student Classification ………………………. 47-11
Project… Tweaking for Speed ………………………… 29-7
Project… Two Orders for the Price of One …………… 19-11
Project… Super Optimized Code for Divisors of a # …. 48-3

Index-13

Project… Weight on Other Planets ……………………. 10-6
Project… What’s My Name? ………………………….. 11-5
Project… What’s That Diameter? ……………………... 15-4
Project… Who Has Highest Priority? …………………. 56-3
Project… Who’s Next? ………………………………... 53-4
Project… Write Student Averages …………………….. 26-2
project creation ………………………………………... N-1, O-1
protected (access control modifier) ……………………. Nug-12
prototype ………………………………………………. Nug22-1
public ………………………………………………….. 15-2, 15-4, 16-4, Nug-12
publishing ……………………………………………... 14-4, U-1
pull …………………………………………………….. 50-2
punch cards ………………………………………......... S-5
push ……………………………………………………. 50-2
put ……………………………………………………... 47-2
putAll ………………………………………………….. 47-2
quadratic probing ……………………………………… 57-5
queue …………………………………………………... 50-2, 53-1, 56-1
Quick Sort ……………………………………………... 41-8, 41-13
Radio Shack …………………………………………… S-4
RAM …………………………………………………... Y-1
random ………………………………………………… 6-1, 30-1, J-2
random numbers ………………………………………. 30-1, Nug25-1
read-only (enhanced for loop) …………………………. 19-5
read-only-memory, ROM ……………………………... S-4
realizes ………………………………………………… 38-4, Nug-3
reassignment of objects ………………………………... 16-2
recursion ………………………………………………. 40-1, 41-8, 41-10, 51-4, Nug26-1
recycle …………………………………………………. T-2
reference ………………………………………………. Nug-17
reference, passing by ………………………………….. 34-1
regular expression ……………………………………... 18-4, 23-2, J-1, AC-1
reheap down …………………………………………… 55-4, 56-2
reheap up ………………………………………………. 55-3, 56-2
rem …………………………………………………….. 1-1
remainder ……………………………………………… 4-1
remarks ………………………………………………... 1-1,1-2
remove ………………………………………………… 42-1, 43-2, 43-3, 44-2, 46-1, 47-1,

50-1, Nug30-1, J-3
removeAll ……………………………………………... 42-1, 46-1
removeFirst ……………………………………………. 50-1, J-3
removing and array, object ……………………………. 19-1
removeLast ……………………………………………. 42-1, 43-2, 50-1, J-3
rename …………………………………………………. Nug30-1
replace …………………………………………………. 17-3, Nug-16, J-2, J-4
replaceAll ……………………………………………… J-2, AC-5, J-2
replaceFirst ……………………………………………. J-2, AC-5
reserved words ………………………………………… A-1
restrictive, least & most for Big O …………………….. 41-13
retainAll ……………………………………………….. 42-1, 46-1
reversal ………………………………………………… 11-5
reverse …………………………………………………. J-4
reverse-order traversal ………………………………… 52-9
Reverse Polish Notation ………………………………. 50-3

Index-14

RGB …………………………………………………… 57-2
ROM …………………………………………………... S-4
root …………………………………………………….. 52-2
round …………………………………………………... 6-1, Nug27-1, J-2
round-off ………………………………………………. 6-1, 27-1
RPN ……………………………………………………. 50-3
RTF files ………………………………………………. T-2
RuntimeException …………………………………….. K-1
saving text files ………………………………………... E-1
scanner ………………………………………………… 45-5, U-1
Scanner class …………………………………………... 7-1, 17-4, 24-1, J-4
scientific notation ……………………………………… 2-1
SDK …………………………………………………… I-2
selection operator ……………………………………… 33-1, Nug-9, H-2
Selection Sort ………………………………………….. 41-4, 41-13
sequential search ………………………………………. 39-3, 41-13
set ……………………………………………………… 42-1, 43-2, 43-3, 44-2, 50-1,

Nug25-1, Nug30, J-2, J-4
setCharAt ……………………………………………… 31-3, 31-5, J-4
Set interface …………………………………………… 46-1
setMaximumFractionDigits …………………………… 27-1
setMinimumFractionDigits ……………………………. 27-1
setValue ……………………………………………….. J-3
scope …………………………………………………... 11-2
shadowing ……………………………………………... 36-2
shell ……………………………………………………. 27-6
shift (left and right) ……………………………………. 29-1, Nug-9
short …………………………………………………… C-1
short circuit ……………………………………………. 29-2, Nug-15, Nug22-1
shortValue ……………………………………………... 21-2
signature ……………………………………………….. 6-1, 15-2
sign bit ………………………………………………… 28-2, 29-1, G-1
sign preservation ………………………………………. 29-1
simple String operations ………………………………. 3-1
simulation ……………………………………………... 30-1
Simultaneously extending and implementing …………. 38-4
sin ……………………………………………………… 6-2
single quotation mark …………………………………. A-1
singly linked list ……………………………………….. 49-1
size …………………………………………………….. 42-1, 43-3, 46-1, 47-2, 50-1
SIZE …………………………………………………… 22-3
skip …………………………………………………….. 17-4, J-4
snapshot ……………………………………………….. 56-5
software specifications ………………………………… 14-4, U-1
sort …………………………………………………….. 19-3, 35-2, 41-1, 45-4, 51-6, 42-2
sort, Arrays class ………………………………………. 19-3, 25-4
sorting …………………………………………………. 41-1, 42-2
source file ……………………………………………… I-2, X-1
spam email …………………………………………….. 17-5
specifiers (Formatter) ……………………….................. 27-2, AD-1
split ……………………………………………………. 18-4, 23-2, Nug28-1, J-1, AC-3
spreadsheet …………………………………………….. T-2
sqrt …………………………………………………….. 6-1, J-2
stack …………………………………………………… 50-1 - 50-5

Index-15

stack class ……………………………………………... 50-2
startsWith ……………………………………………... 17-3
state variables ………………………………………….. 15-1, AE-3
static …………………………………………………… 20-1, Nug30-1
static block …………………………………………….. Nug20-1
static imports …………………………………………... 20-3, 20-14
static initialization block ………………………………. Nug20-1
static methods/variables ……………………………….. 19-3, 20-1
step expression ………………………………………… 11-1, 12-1
storage methods, file …………………………………... F-1
String …………………………………………………... 2-1
StringBuffer class ……………………………………... 31-1, Nug-7, J-3, J-4
String constant pool …………………………………… 16-3
StringIndexOutOfBoundsException …………………... K-1
StringTokenizer ……………………………………….. 23-1, 25-1
StringToknizer project, censor ………………………… 23-5
student averages ……………………………………….. 25-6, 26-2
subclass ………………………………………………... 36-1,2
subscripted variables …………………………………... 18-1, 35-1
substring ……………………………………………….. 3-1, 31-3, Nug-4, J-1, J-4
subtree …………………………………………………. 52-10, W-1
Sun Microsystems ……………………………………... 48-2, X-1, AE-1
super …………………………………………………… 36-1,-3, -7, 36-12—36-15, 37-4
superclass ……………………………………………… 36-1,2
swap …………………………………………………… 41-2
switch ………………………………………………….. 10-1
System dialog ………………………………………….. X-3
System.out.print() …………………………………….. 1-2
System.out.println() …………………………………... 1-1
switch positions ……………………………………….. 28-4
System Variable ……………………………………….. I-4, X-3
tab ……………………………………………………... A-1
table ……………………………………………………. 47-1
tan ……………………………………………………... 6-2
TEKs correlation ………………………………………. R-1
telemetry ………………………………………………. 28-4
template ………………………………………………... AF-2
ten’s complement ……………………………………… G-2
ternary conditional 33-1, H-2
Texas TEKS/TAKS correlation ……………………….. R-1
text files ……………………………………………….. 26-2, E-1, F-1
text parsing …………………………………………….. 17-4
this ……………………………………………………... 36-3, 36-11, 36-12,13,14,15, 46-6
throw …………………………………………………... 37-1
throws …………………………………………………. 24-2, 37-2, M-1
Time Allocation for Lessons ………………………….. P-1
time/date format ……………………………………….. AD-1, AD-2
timer …………………………………………………… 48-2
time zone ………………………………………………. AD-2
toArray ………………………………………………… 42-1, 46-1, 50-1
toBinaryString …………………………………………. 22-2
toCharArray …………………………………………… 19-2, J-1
toDegrees ……………………………………………… 6-2
toHexString ……………………………………………. 22-1

Index-16

token …………………………………………………... 23-1
toLowerCase …………………………………………... 3-1, 13-3, J-2
toOctalString …………………………………………... 22-1
Tools menu ……………………………………………. E-1
toRadians ……………………………………………… 6-2
toString ………………………………………………... 14-3, 19-3, 22-1, 31-1, 36-4, 47-3,

50-1, 50-6, 57-7, J-1, J-4
toUpperCase …………………………………………... 3-3, 13-3, J-2
tracectory tables ……………………………………….. S-1
traversing a binary tree ………………………………... 52-4, 52-8,9, W-1
traversing a list ………………………………………… 49-2
tree …………………………………………………….. 45-8, 52-1
TreeMap ……………………………………………….. 47-1
TreeSet ………………………………………………… 46-1
trim …………………………………………………….. 17-3
Trojan horse virus ……………………………………... T-1
TRS 80 Model III ……………………………………… S-4
truncation ……………………………………………… 4-3
truth table …………………………………………........ 8-1, 32-1,4,5
try ……………………………………………………… 37-3, Nug29-1
TurtleGraphics ………………………………………… M-1
two-dimensional arrays ………………………………... 35-1, Nug24-1
two’s complement ……………………………………... G-1
type parameter ………………………………………… 43-1, 44-3, 46-1, 47-2
type safety ……………………………………………... 43-2, 46-1, 47-2
unary operator …………………………………………. H-1
unbalanced tree ………………………………………... 52-6
unboxing ………………………………………………. 21-2
unchecked exception …………………………………... 37-2
undo …………………………………………………… 50-3
Unicode ………………………………………………... 13-1
Unicode groups ………………………………………... AC-2
union of Sets ………………………………………… 46-1, 46-4
UnknownHostException ………………………………. K-1
UnsupportedOperationException ……………………... K-1
upper bound …………………………………………… 51-1
useDelimiter …………………………………………… 17-4, J-4
User Variable ………………………………………….. I-4, X-3
UTC …………………………………………………… 48-2, AD-2
value, lookup table …………………………………….. 57-1
Value, hash table ………………………………………. 57-3
value, map ……………………………………………... 19-2, 47-1
valueOf ………………………………………………... 19-2, 22-2, Nug-15, J-1
value, passing by ………………………………………. 34-1
values ………………………………………………….. 47-2
variable types ………………………………………….. 2-1
Vb.net ………………………………………………….. V-2
Vector …………………………………………………. 42-1, 42-2, 45-5
virus …………………………………………………… T-1
wildcard ……………………………………………….. I-1
Windows 95, 98, NT, Millennium, 2000, XP …………. S-4
Visual Basic …………………………………………… V-2
void ……………………………………………………. 15-2
von Neuman, John …………………………………….. S-2

Index-17

WAN …………………………………………………... U-1
web browser …………………………………………… V-2
weight …………………………………………………. 10-5
while-loop ……………………………………………... 12-1
whitespace ……………………………………………... 13-2, 18-4, AC-2
wide area network (WAN) …………………………….. U-1
wildcard character ……………………………………... I-1
Windows ………………………………………………. V-2
Windows 98 …………………………………………… E-2, I-1, S-4
Windows 2000 ………………………………………… X-1
Windows Explorer …………………………………….. E-1, X-1
Windows Scripting Host ………………………………. T-2
Windows XP …………………………………………... X-1
Winzip …………………………………………………. I-5
word characters ………………………………………... 17-5
Word, MS ……………………………………………... T-2
Wordpad ………………………………………………. E-2
World War II …………………………………………... S-1
worm …………………………………………………... T-1
Wozniak, Steve ………………………………………... S-4
wrapper classes ………………………………………... 21-1, Nug-14, 43-1
writing to a text file ……………………………………. 26-1
WSH …………………………………………………... T-2
XOR …………………………………………………… 28-1, Nug23-1
XP ……………………………………………………... S-4
zip ……………………………………………………... T-2

	Cover Page
	Preface
	Table of Contents
	Lesson 1... Hello World
	Project... From Me To You

	Lesson 2... Variable Types (String, int, double)
	Lesson 3... Simple String Operations
	Project... Name that Celebrity

	Lesson 4... Using Numeric Variables
	Project... Cheating on Your Arithmetic Assignment

	Lesson 5... Mixed Data Types, Casting, and Constants
	Project... Mixed Results

	Lesson 6... Methods of the Math Class
	Project... Compute This

	Lesson 7... Input from the Keyboard
	Project... Going in Circles
	Project... What's My Name?

	Lesson 8... The boolean Type and boolean Operators
	Lesson 9... The if Statement
	Project... Even or Odd?

	Lesson 10... The switch Statement and char
	Project... Weight on Other Planets

	Lesson 11.. The for Loop
	Project... Name Reversal

	Lesson 12... The while & do-while Loops
	Lesson 13... ASCII and More on char
	Lesson 14... Binary, Hex, and Octal
	Project... Basically Speaking

	Lesson 15... Classes and Objects
	Project... What's That Diameter?
	Project... Overdrawn at the Bank

	Lesson 16... More on Classes and Objects
	Project... Gas Mileage

	Lesson 17... Advanced String Methods
	Project... Add 'em Up
	Project... Encryption / Decryption

	Lesson 18... Arrays
	Project... Count 'em Right
	Project... Array of Hope

	Lesson 19... Advanced Array Concepts
	Project... Sorting a String Array
	Project... Two Orders for the Price of One

	Lesson 20... Static Methods and State Variables
	Project... How Far to the Line?

	Lesson 21... Wrapper Classes
	Lesson 22.. Additional Methods of Wrapper Classes
	Lesson 23... StringTokenizer Class
	Project... Military Censor

	Lesson 24... Input from a Disk File
	Project... Reading Files

	Lesson 25... Processing File Input with Scanner
	Project... Get Rid of that Plus Sign
	Project... Student Averages

	Lesson 26... Writing to a Text File
	Project... Write Student Averages

	Lesson 27... Formatting (rounding off)
	Project... BaseClass (Shell)
	Project... Gymnastics

	Lesson 28... Bitwise Operators
	Project... Masking Telemetry Data

	Lesson 29... Advanced Bitwise Operations
	Project... Tweaking for Speed

	Lesson 30... Random Numbers
	Project... Generate Random Integers
	Project... Generate Random Doubles
	Project... Monte Carlo Technique

	Lesson 31... StringBuffer Class
	Project... Concatenations Gone Wild

	Lesson 32... Boolean Algebra and DeMorgan's Theorem
	Lesson 33... Selection Operator (? :)
	Lesson 34... Passing by Value and By Reference
	Project... Pass the Gravy, Please

	Lesson 35... Two-Dimensional Arrays
	Project... Matrix Multiplication
	Project... Matrix Multiplication with Input File

	Lesson 36...Inheritance
	Lesson 37... Exceptions
	Project... Keep Trying

	Lesson 38... Interfaces
	Project... Linear Function

	Lesson 39... Complexity Analysis (Big O)
	Lesson 40... Recursion
	Project... Fibonacci

	Lesson 41... Sorting Routines
	Bubble Sort
	Project... Bubble Sort
	Selection Sort
	Project... Selection Sort
	Insertion Sort
	Project... Insertion sort
	Quick Sort
	Project... Quick Sort
	Merge Sort
	Project... Merge Sort
	Project... Multiple Key Sorting
	Big O Summary

	Lesson 42... List Interface
	Lesson 43... ArrayList
	Project... Big Bucks in the Bank

	Lesson 44... Iterator / ListIterator
	Project... Big Bucks Revisited

	Lesson 45... Comparable and Comparator Interfaces
	Project... Sorting BankAccount Objects
	Project... Sorting BankAccount Objects Alphabetically
	Project... Sorting BankAccount Objects using a Compatator

	Lesson 46... Hashset / TreeSet
	Project... Hashset / Intersection
	Project... Hashset / Union
	Project... Don't Make Me Take That Final!

	Lesson 47... HashMap / TreeMap
	Project... Mapping Bank Accounts
	Project... Code Talker
	Project... Histogram
	Project... Student Classification

	Lesson 48... Flow Charts & Optimizing for Speed
	Project... Divisors of a Number
	Project... Optimized Code for Divisors of a Number
	Project... Super Optimized Code for Divisors

	Lesson 49... Singly Linked List
	Project... insert method for Singly Linked List

	Lesson 50... The LinkedList Class (doubly linked) and Stacks
	Project... StackLL Class
	Project... Stack Calculator

	Lesson 51... Binary search
	Project... Binary Search, Reverse order
	Project... Binary Search with Objects

	Lesson 52... Binary Search Tree
	Project...BST find Method

	Lesson 53... Queues
	Project... Who's Next?
	Project... Shifting Marquee

	Lesson 54... Inner Classes
	Project... Inner Class Inside a Method
	Project... Inner Class Inside an Outer Class

	Lesson 55... Heaps
	Project... Printing a Heap
	Project... A Heap of Trouble

	Lesson 56... Priority Queues
	Project... Who Has Highest Priority?
	Project... Smile for the Camera

	Lesson 57... Lookup Tables and Hashing
	Project... A Taste of Hash
	Project... Hashing Abraham Lincoln

	Case Study... Distance to a Meandering Trail
	Golden Nuggets of Wisdom
	Nugget # 1
	Nugget # 2
	Nugget # 3
	Nugget # 4
	Nugget #5
	Nugget # 6
	Nugget # 7
	Nugget # 8
	Nugget # 9
	Nugget # 10
	Nugget # 11
	Nugget # 12
	Nugget # 13
	Nugget # 14
	Nugget # 15
	Nugget # 16
	Nugget # 17
	Nugget # 18
	Nugget # 19
	Nugget # 20
	Nugget # 21
	Nugget # 22
	Nugget # 23
	Nugget # 24
	Nugget # 25
	Nugget # 26
	Nugget # 27
	Nugget # 28
	Nugget # 29
	Nugget # 30

	Appendices
	Appendix A... Key Words
	Appendix B... Escape Sequences
	Appendix C. Primitive Data Types
	Appendix D... ASCII Codes
	Appendix E... Saving Text Files
	Appendix F... Text and Binary Files Explained
	Appendix G... Two's Complement Notation
	Appendix H... Operator Precedence
	Appendix I... Creating Packages and Importing Classes
	Appendix J... Typical Contest Classes and Interfaces
	Appendix K... Exception Classes
	Appendix L... An Essay on Interfaces
	Appendix M... Input from the Keyboard
	Appendix N... Using the BlueJ Programming Environment
	Appendix O... Using the JCreator Programming Environment
	Appendix P... Time Allocation for Lessons and Tests
	Appendix Q... AP (A & AB) Correlation
	Appendix R... Texas TEKS Correaltion, Computer Science I
	Appendix S... A History of Computers
	Appendix T... Viruses
	Appendix U... Enrichment Activities
	Appendix V... Computer Languages
	Appendix W... Tree Definitions
	Appendix X... Compiling and Executing without an IDE
	Appendix Y... Bytes, Kilobytes, Megabytes, & Gigabytes
	Appendix Z... Formatting with the DecimalFormat Class
	Appendix AA... Multiplication of Matrices
	Appendix AB... Monospaced Fonts
	Appendix AC... Regular Expressions
	Appendix AD... Formatter Class Specifiers and Flags
	Appendix AE... javaDoc
	Appendix AF... Generic Classes

	Index
	Some new features of Java 5.0
	Scanner input from keyboard
	Using Scanner to parse a String
	Enhanced for-loop
	Static imports
	Autoboxing/Unboxing
	File input with Scanner
	Process file input with Scanner
	Formatter class
	The printf method
	BaseClass with Scanner
	Formatter specifiers and flags
	nanoTime
	Scanner summary
	Generics (type parameters)
	ArrayList
	Iterator
	Sets
	Maps
	Generic Classes

