 COSC 2103 Programming Assignment #5 Due _______________
This program will use interfaces and polymorphism. You must first write implementations for four classes. The outlines of their implementations are provided on Blackboard in a zip file as the name assignment5.zip. The base abstract class is Ride.java and the three derived classes are CoasterRide.java, JuniorRide.java, and GentleRide.java. The last three each extend Ride.java. You may add methods to the three derived classes as you see the need. You must not add variables or constants to any of the classes. Note: this CoasterRide class is different from that used in a previous assignment. Data is different, although you will see some of the same ride names.
The program which uses this hierarchy of classes will process a data file, instantiating CoasterRide, JuniorRide, and GentleRide objects and storing their references in an array of Ride handles. Remember this works because a CoasterRide object is also an Ride object, etc.

Ride rideList[] = new Ride[30];
The data is found in a text file called RideData.txt, also found on Blackboard. RideData.txt will contain groups of text lines for each object as follows:
first character is a char code, C for CoasterRide, J for JuniorRide, or G for GentleRide
· The next lines contain
 a ride name (guaranteed to be followed by a newline) , a construction cost value and a ticket cost value
· The next data is either
 a maximum speed (a double) for CoasterRide objects
 an integer giving the maximum capacity of the JuniorRide
 a char value which is the code for the design theme of the GentleRide
 (S = Spooky, G = Generic, W = Western, and F = sci-Fi)
· This is followed by integers for month, day, and year of the installation

The strategy is to read the first character code, then use some sort of branching to read the rest of the data according to that code, instantiating the correct type of object and storing the reference in the array. Writing methods which might be part of each different class would work well here to do the reading. Once the different objects are read in and their references stored in the array, you should sort the data by ascending installation date. When you find two objects out of order, you swap the array items, that is the references. When you are done, you will then step through the array calling the abstract displayRide method for each object referenced. Polymorphism will take care of from which of the classes the displayRide method is used. The format of the report is shown below:

 Ride Evaluation Report

 <your name>, Ride Consultant

 Report Date: mm/yy/dddd

 Installation Maximum Maximum Design Construction Ticket

Ride Name Date Speed Capacity Theme Cost Price

------------------ ------------ --------- -------- --------- ---------- --------
xxxxxxxxxxxxxxxxxx mm/dd/yyyy 99.99 99999.99 99.99
xxxxxxxxxxxxxxxxxx mm/dd/yyyy 999 99999.99 99.99
xxxxxxxxxxxxxxxxxx mm/dd/yyyy xxxxxxxxx 99999.99 99.99

The output will be sent to a text file for printing. It might be wider than 80 columns so whatever text editor you use to print the output, either reduce the size of the font as shown above and/or have it print in landscape format. Also, make sure that it prints in a font like Courier, which gives each character equal spacing.

Note that each different type of object has a little bit different appearing detail line. This will be the difference between the implementations of the abstract displayRide() method from Ride.java. All types of objects print the ride name, installation date, construction cost, and ticket price. Different types of objects print data unique to their category. Note that spaces should be printed, not zeros when a column has no values printed for a given type.
You will submit one run of the report, source code of each class implementation, and source code of the main program which uses the classes, reads the data, sorts it, and prints the report.

A program satisfying all the above criteria will earn a score of 95. A higher score in the A range is achieved by earning elegance points. Elegance points will be given for using the JFileChooser GUI object to choose and open the EticketData.txt file. Highlight this in your source code for the grader and print a screen snapshot of its use for grading purposes. Elegance will also be given for creating a fourth subclass with its implementation, and using a different attribute (say something for a transportation ride class) as their data objects. Then add appropriate data to the file and generate a report which demonstrates the new class. This should be submitted as a separate program.
Your program must be documented. At the beginning you will include comments which specify your name, your section, your CPO, the date due, and a description of the purpose of the program (note this description is in both the comments and in the output to the user). In strategic places throughout the program you should include comments which describe sections of the program. Another part of your documentation is well chosen identifiers. For example use interest_rate instead of rt.

When a program has column totals, make sure that the totals printed are indeed the totals of the numbers in the column above it. Remember that programs are due at the beginning of the class on the specified due date. Late work will be accepted with a reduction of 10 points per day (or portion thereof). String (character array) output should be left justified, numeric output right justified with decimal points aligned for tabular reports. Make sure that all work is obviously, uniquely yours. Severe grade reductions will be made for all programs which are too closely alike one another.

